exp.

13, 15, 17, 19, \& 21 John Street and 36, 38, \& 40 South Station Street, Toronto, Ontario
 M9N 1J2
 Hydrogeological Investigation

Client:
21 John Dev Inc.
31 Scardale Road, Unit 5
Toronto, ON, M3B $2 R 2$
Attention: Stephanie Bonic
Type of Document:
Final Report

Project Name:

13, 15, 17, 19, \& 21 John Street and 36, 38, \& 40 South Station Street, Toronto, Ontario

Project Number:

BRM-21021990-A0

EXP Services Inc.
1595 Clark Boulevard
Brampton, ON, L6T 4V1
t: 905.793.9800
f: 905.793.0641

Date Submitted:

2021-12-17
Revision 1: 2021-12-23
Revision 2: 2022-09-13
Revision 3: 2022-10-07
Revision 4: 2023-04-17

Table of Contents

1 Introduction 3
1.1 Project Description 3
1.2 Project Objectives 3
1.3 Scope of Work 3
1.4 Review of Previous Documents 4
2 Hydrogeological Setting 5
2.1 Regional Setting 5
2.1.1 Regional Physiography 5
2.1.2 Regional Geology and Hydrogeology 5
2.1.3 Existing Water Well Survey 6
2.2 Site Setting 6
2.2.1 Site Topography 6
2.2.2 Local Surface Water Features 6
2.2.3 Local Geology and Hydrogeology 6
3 Results 9
3.1 Monitoring Well Details 9
3.2 Water Level Monitoring 9
3.3 Hydraulic Conductivity Testing 9
3.4 Groundwater Quality 11
4 Dewatering Assessment 12
4.1 Dewatering Flow Rate Estimate and Zone of Influence 12
4.2 Cooper-Jacob's Radius of Influence 13
4.3 Stormwater 13
4.4 Results of Dewatering Rate Estimates 13
4.4.1 Construction Dewatering Rate Estimate 13
4.4.2 Post-Construction Dewatering Rate Estimate 15
4.5 MECP Water Taking Permits 15
4.5.1 Short-Term Discharge Rate (Construction Phase) 15
4.5.2 Long-Term Discharge Rate (Post Construction Phase) 15
5 Environmental Impact 16
5.1 Surface Water Features 16
5.2 Groundwater Sources 16
5.3 Geotechnical Considerations 16
5.4 Groundwater Quality 16
5.5 Well Decommissioning 17
6 Conclusions and Recommendations 18
7 Limitations 20
8 References 21

List of Figures

Figure 1 - Site Location Plan

Figure 2 - Surficial Geology

Figure 3 - MECP Water Well Records Map

Figure 4 - Borehole/Monitoring Well Location Plan

Figure 5 - Cross Section A-A

Figure 6A - Shallow Groundwater Flow Map

Figure 6B - Deep Groundwater Flow Map

List of Appendices

Appendix A - MECP WWR Summary Table
Appendix B - Borehole Logs
Appendix C - Groundwater Elevation Summary
Appendix D - SWRT Procedures and Results
Appendix E - Laboratory’s Certificates of Analysis
Appendix F - Construction and Post Constrcution Flow Rate Calculations
Appendix G - ORMGP and TRCA
Appendix H - Architectural Drawings

1 Introduction

1.1 Project Description

EXP Services Inc. (EXP) was retained by 21 John Dev Inc.. to prepare a Hydrogeological Investigation Report associated with the proposed development located at 13, 15, 17, 19 and 21 John Street and 36, 38 and 40 South Station Toronto, Ontario (hereinafter referred to as the 'Site').

It is our understanding that the proposed development plan is to demolish the existing structures and construct a forty (40) storey mixed-use building with three (3) levels of underground parking (P3). The architectural drawings are provided in Appendix H. The Site location plan is shown on Figure 1.

EXP conducted a Geotechnical Investigation in conjunction with this investigation. The pertinent information gathered from the noted investigation is utilized for this report.

1.2 Project Objectives

The main objectives of the Hydrogeological Investigation are as follows:

Establish the local hydrogeological settings within the Site;
Provide recommendations on construction (short--term) and post-construction (long-term) dewatering;
Assess groundwater quality; and
Prepare a Hydrogeological Investigation Report.

1.3 Scope of Work

To achieve the investigation objectives, EXP has completed the following scope of work:
Reviewed available geological and hydrogeological information for the Site;
Developed and conducted Single Well Response Tests (SWRT) on all five (5) monitoring wells installed in geotechnical boreholes during the geotechnical drilling program to assess hydraulic conductivities of the saturated soils at the Site;

Completed nine (9) rounds of groundwater level measurements at all monitoring wells. As per the City of Toronto's requirements, a three (3)-month monitoring program was completed.

Collected two (2) groundwater samples for analyses of parameters, as listed in the City of Toronto Sanitary and Storm Sewer Use By-Law;

Evaluated the information collected during the field investigation program, including borehole geological information, Water Well Records (WWR), SWRT results, groundwater level measurements and groundwater water quality;

Prepared site plans, cross sections, geological mapping and groundwater contour mapping for the Site;
Estimated construction (short-term) and post-construction (long-term) dewatering flow rates;
Provided recommendations on the Ministry of Environment, Conservation and Parks (MECP) Water Taking Permits and City of Toronto Sewer Discharge Agreements (SDA) for the construction and post-construction phases;

Prepared a Hydrogeological Investigation Report; and
As per the City's requirements, Hydrology Review Form is completed under a separate cover.

The Hydrogeological Investigation was prepared in accordance with the Ontario Water Resources Act, Ontario Regulation 387/04, and Toronto Municipal Code 681-Sewers. The scope of work outlined above was made to assess dewatering and did not include a review of Environmental Site Assessments (ESA).

Any past and/or future geotechnical, hydrogeological, environmental and risk assessments, and updated development/architectural plans should be provided to update this hydrogeological report prior to submission of permits and approvals by the municipalities and agencies.

1.4 Review of Previous Documents

The following documents were reviewed as part of this Hydrogeological Investigation:
EXP Services Inc. (September 9, 2022), Supplementary Geotechnical Investigation, Proposed Multi-Storey Mixed-Use Development 13, 15, 17, 19 and 21 John Street and 36, 38 and 40 South Station Street, Toronto, Ontario, prepared for 21 John Dev Inc.

3XN USA LLC (July 22, 2022), Draft Architectural Drawings, South Station Street, 13-21 John Street / 30-40 South Station Street, Toronto, ON, prepared for Devron.

EXP Services Inc. (December 9, 2021), Preliminary Geotechnical Investigation, Proposed Multi-Storey Mixed-Use Development 13, 15, 17, 19 and 21 John Street and 36, 38 and 40 South Station Street, Toronto, Ontario, prepared for Devron Developments.

Any past and/or future geotechnical, hydrogeological, environmental and risk assessments, and updated development/architectural plans should be provided to update this hydrogeological report prior to submission of permits and approvals by the municipalities and agencies.

2 Hydrogeological Setting

2.1 Regional Setting

2.1.1 Regional Physiography

The Site is within a physiographic region known as the Iroquois Plain. The physiographic landform is named Sand Plains. The South Slope lies to the north of the Iroquois Plain (Chapman \& Putnam, 2007).

The Iroquois Plain was created along the shores of former Lake Iroquois, an ancient glacial lake. The noted Plain primarily consists of shallow water sandy deposits.

The topography of the Iroquois Plain is relatively flat with a gradual slope to the south, toward Lake Ontario.

2.1.2 Regional Geology and Hydrogeology

The surficial geology can be described as coarse textured (foreshore-basinal) glaciolacustrine deposits consisting of sand, gravel, minor silt and clay (Ministry of Northern Development and Mines, 2012). The surficial geology of the Site and surrounding areas is shown on Figure 2.

Based on the available regional geology maps, the subsurface stratigraphy of the Site from top to bottom is summarized in Table 2-1 (TRCA, 2008 and Oak Ridge Moraine Groundwater Program, 2022). The overburden thickness is approximately between 7 and 9 meters (Appendix G).

Table 2-1: Summary of Subsurface Stratigraphy

Stratigraphic Unit	General Description	Top Elevation of Stratigraphic Unit (masl)
Oak Ridges Moraine or Equivalent (Aquifer)	This geology unit mainly consists of interbedded fine-grained sand and silt deposits where coarse-grained sand and gravel along with clay laminae are locally reported.	127
Thorncliffe Formation (Aquifer)	This geology formation generally consists of glaciofluvial (sand, silty sand) or glaciolacustrine deposits (silt, sand, pebbly silt and clay).	126
Sunnybrook Formation (Aquitard)	This lithologic unit was deposited near an ice sheet. It predominately consists of silt and clay.	120
Georgian Bay Formation	Bedrock primarily consists of interbedded shale, limestone, dolostone and siltstone. It belongs to the Upper Ordovician, (Ministry of Northern Development and Mines, 2012).	119

Regional groundwater across the area flows south-southeast, towards Humber River and Lake Ontario, respectively (Oak Ridge Moraine Groundwater Program, 2022). Local deviation from the regional groundwater flow pattern may occur in response to changes in topography and/or soils, as well as the presence of surface water features and/or existing subsurface infrastructure.

2.1.3 Existing Water Well Survey

Water Well Records (WWRs) were compiled from the database maintained by the Ministry of the Environment, Conservation and Parks (MECP) and reviewed to determine the number of water wells documented within a 500-m radius of the Site centroid. The locations of the MECP WWRs within 500 m of the Site centroid are shown on Figure 3. A summary of the WWR is included in Appendix A.

The MECP WWR database indicates ninety-seven (97) offsite records (Figure 3 and Appendix A). Well distances are calculated relative to the Site centroid, therefore some distances exceed 500 m .

The database indicates that the offsite wells are at an approximate distance of forty-three (43) m or greater from the Site centroid. All offsite wells are reportedly identified as monitoring and observation wells, test holes, abandoned and/or listed with unknown use. The reported water levels ranged from depths of 0.4 m to 11.5 meters below ground surface (mbgs).

2.2 Site Setting

2.2.1 Site Topography

The Site is in an commercial land use setting. The topography is considered relatively flat with a regional gradual southerly slope towards Humber River.

As indicated on the borehole logs included in Appendix B, the surface elevation of the Site ranges between approximately 126.66 to 127.40 meters above sea level (masl).

2.2.2 Local Surface Water Features

The Site is within the Black Creek - Humber River Outlet watershed. No surface water features exist onsite. The nearest surface water feature is Humber River, approximately located 350 meters southwest of the Site boundary. Lake Ontario is approximately 8.5 km from the Site boundary to the southeast (Appendix G).

Based on the Toronto Region and Conservation Authority floodplain database, the Site is not within the floodplain areas (Appendix G).

2.2.3 Local Geology and Hydrogeology

A summary of subsurface soil stratigraphy is provided in the following paragraphs. The soil descriptions are based on the geotechnical investigation report (EXP, 2021 and 2022). They are summarized for the hydrogeological interpretations. As such, the information provided in this section shall not be used for construction design purposes.

The detailed soil profiles encountered in each borehole and the results of moisture content determinations are presented on the attached borehole logs (Appendix B). The interpreted geological cross-section is shown on Figure 5 . The soil boundaries indicated on the borehole logs are inferred from non-continuous sampling and observations during drilling. These boundaries are intended to reflect approximate transition zones for the Hydrogeological Investigation and shall not be interpreted as exact planes of geological change.

The "Notes on Sample Description" preceding the borehole logs form an integral part of the logs and should be read in conjunction with this report. The following is a brief description of the soil conditions encountered during the investigation.

Based on the results of the geotechnical investigation, the general subsurface soil stratigraphy consists of the following units from top to bottom:

Pavement Structure

According to the EXP's geotechnical report issued in 2021, pavement structure comprising asphalt with thickness ranging from about 75 to 115 mm underlain by granular fill 150 to 300 mm in thickness was encountered at Borehole 1, 2, 3, 6 and 7 locations.

According to the EXP's geotechnical report issued in 2022, pavement structure comprising asphalt with thickness ranging from about 50 to 75 mm underlain by granular fill 75 to 175 mm in thickness was encountered at Borehole 201, 202 and 203.

Fill

According to the EXP's geotechnical report issued in 2021, fill was encountered at the surface of Borehole 4 and 5 locations and below the pavement structure in all other borehole locations. The fill extends to depths ranging from about 1.5 to 3 m below existing ground surface. The fill comprises a mix of clayey silt, silty clay, sandy silt and silty sand, with traces of gravel. Moisture contents in the fill ranged from approximately 4 to 24 percent. The samples were described to be in moist to very moist condition.

According to the EXP's geotechnical report issued in 2022, fill was encountered at the surface of Borehole 204 and 205 locations and below the pavement structure in all other borehole locations. The fill extends to depths ranging from about 1.5 to 2.3 m below existing ground surface. The fill comprises a mix of clayey silt, silty clay, sandy silt and silty sand, with traces of gravel. Moisture contents in the fill ranged from approximately 3 to 23 percent. The samples were described to be in moist to very moist condition.

Silty Clay

According to the EXP's geotechnical report issued in 2021, a silty clay deposit was encountered below the fill in Borehole 1, 2, $3,5,6$ and 7 locations. The deposit was encountered at approximate depths of 1.5 to 2.3 m , and extended to depths of about 2.3 to 4.5 m . This deposit contains trace sand and gravel. It is brown in colour and has moisture contents of about 18 to 25 percent of dry mass indicating very moist condition. The silty clay has a firm to stiff consistency (recorded ' N '-values of 8 to 14).

Silty Clay Till

According to the EXP's geotechnical report issued in 2021, silty clay till was encountered below the silty clay in Boreholes 1, 2 and 3 and below the fill in Borehole 4. The silty clay till was encountered at approximate depths of 2.3 to 3 m and extends to depths of about 4 to 4.5 m below existing ground surface. This deposit contains some sand and trace gravel and is brown in colour. It has moisture contents of 13 to 18 percent of dry mass indicating moist condition. The silty clay till has a stiff to very stiff consistency (recorded ' N '-values of 12 to 17).

According to the EXP's geotechnical report issued in 2022, a silty clay deposit was encountered below the fill in all borehole locations. The deposit was encountered at approximate depths of 1.5 to 2.3 m and extended to depths of about 3.8 to 5.2 m . This deposit contains trace sand and gravel. It is brown in colour, changing to grey with depth and has moisture contents of about 11 to 26 percent of dry mass indicating moist to very moist condition. The silty clay has a firm to firm to very stiff consistency (recorded ' N '-values of 8 to 28).

Shale Bedrock

According to the EXP's geotechnical report issued in 2021, shale bedrock was encountered below the silty clay till in Boreholes $1,2,3$, and 4 and below the silty clay in Boreholes 5,6 , and 7 . All boreholes were terminated by auger refusal in the shale bedrock. Highly weathered shale was encountered at approximate depths of about 4 to 4.5 m . The recorded ' N '-values in the shale were 50 blows for less than 150 mm of penetration.

According to the EXP's geotechnical report issued in 2022, shale bedrock was encountered below the silty clay till in all borehole locations. Highly weathered shale was encountered at approximate depths of about 3.8 to 5.3 m . The recorded ' N 'values in the shale were 50 blows for less than 150 mm of penetration. Upon encountering auger refusal, rock coring was initiated to verify bedrock conditions. The coring was carried out using ' H ' sized double tube wireline equipment. The boreholes were terminated in the shale bedrock at depths ranging from about 15.1 to 15.5 m . The shale contains 71 to 84% shale, 3 to 8% limestone, 9 to 16% siltstone, and 0 to 1% clay seams.

3 Results

3.1 Monitoring Well Details

The monitoring well network was installed as part of the Geotechnical and Environmental Investigations at the Site. It consists of the following:

Seven (7) shallow monitoring wells, including BH1 through BH 7 were installed to an approximate depth ranged from 3.8 mbgs to 5.8 mbgs;

Five (5) deep monitoring wells, including BH2O1 through BH2O5 were installed to an approximate depth ranged from 15.1 mbgs to 15.4 mbgs.

Each monitoring well is equipped with a 50-mm (2-inch) diameter PVC casing, a flush-mount, and a three (3)-meter long screen.

Borehole logs and monitoring well installation details are provided in Appendix B . The monitoring well locations are shown on Figure 4.

3.2 Water Level Monitoring

As part of the Hydrogeological Investigation, static water levels were recorded in nine (9) monitoring events between November 30, 2021, and October 20, 2022. A summary of all static water level data as it relates to the elevation survey is given in Appendix C. As per the City's requirements, a three (3)-month monitoring program was completed.

The groundwater elevation recorded for the shallow wells ranged from 124.78 masl (2.23 mbgs at BH 7 on January 18,2022) to 125.84 masl (1.48 at BH 4 on November 30, 2021).

The groundwater elevation recorded for the deep wells ranged from 115.65 masl (11.30 mbgs at BH205 on August 4, 2022) to 118.70 masl (8.70 mbgs at BH2O1 on October 4, 2022).

Two (2) maps were created for the Site to show groundwater contours in the shallow and deep water-bearing zones (Figures 6A and 6B, respectively). Accordingly, the groundwater flow direction is interpreted to be south of the Site, towards Humber River.

The groundwater monitoring data obtained from the Site indicates that vertical groundwater gradient at the Site is downward. However, based on the ORMGP's database mapping, the vertical groundwater gradient is shown upward (Appendix G).

Groundwater levels are expected to show seasonal fluctuations and vary in response to prevailing climate conditions. This may also affect the direction and rate of flow. It is recommended to conduct seasonal groundwater level measurements to provide more information on seasonal groundwater level fluctuations.

3.3 Hydraulic Conductivity Testing

Twelve (12) Single Well Response Tests (SWRT's) were completed on all monitoring wells on December 3, 2021, as well as August 4 and 18, 2022. The tests were completed to estimate the saturated hydraulic conductivity (K) of the lithologic units at the well screen depths. Water level in each well was recorded both manually and electronically. A pre-programmed datalogger was utilized to record the water displacements in one (1) second interval electronically.

The static water level within each monitoring well was measured prior to the start of testing. In advance of performing SWRTs, each monitoring well underwent development to remove fines introduced into the screens following construction. The development process involved purging of the monitoring wells to induce the flow of fresh formation water through the screen. Each monitoring well was permitted to fully recover prior to performing SWRTs.

Hydraulic conductivity values were calculated from the SWRT and constant rate test data as per Hvorslev's solution included in the Aqtesolv Pro. V.4.5 software package. The semi-log plots for normalized drawdown versus time are included in Appendix D. A summary of the hydraulic conductivities (K-values) estimated from the SWRTs are provided in Tables 3-1 and 3-2 below.

Table 3-1: Summary of Hydraulic Conductivity Test Results for Shallow Water-Bearing Zone

Monitoring	Well Depth	Screen Interval (mbgs)*		Screened Lithology**	Estimated Hydraulic
		from	to		Conductivit $\mathrm{y}(\mathrm{~m} / \mathrm{s})$
BH 1	4.53	1.53	4.53	Fill (Clayey Silt/Silty Clay), Silty Clay/Silty Clay Till	7.7E-08
BH 2	4.34	1.34	4.34	Silty Clay / Silty Clay Till/ Weathered Shale	5.7E-07
BH 3	4.39	1.39	4.39	Fill (Silty Clay)/Silty Clay/Silty Clay Till/Weathered Shale	5.2E-07
BH 4	3.77	0.77	3.77	Fill (Silty Sand/Silty Clay)/Silty Clay Till/Weathered Shale	2.6E-06
BH 5	4.40	1.40	4.40	Silty Clay/Weathered Shale	2.8E-06
BH 6	5.80	2.80	5.80	Silty Clay/Weathered Shale	3.6E-06
BH 7	5.26	2.26	5.26	Silty Clay/Weathered Shale	$1.5 \mathrm{E}-06$
Highest Estimated K-Value for Overburden and Weathered Bedrock					3.6E-06
Arithmetic Mean of K-Values for Overburden and Weathered Bedrock					1.7E-06
Geometric Mean of Estimated K-Values for Overburden and Weathered Bedrock					$9.8 \mathrm{E}-07$

Table 3-2: Summary of Hydraulic Conductivity Test Results for Deep Water-Bearing Zone (Sound Bedrock)

SWRTs provide K-estimates of the geological formation surrounding the well screens and may not be representative of bulk formation hydraulic conductivity. As shown on Table 3-1, the highest K-value of the tested shallow water-bearing zone (saturated overburden and weathered bedrock) is $3.6 \mathrm{E}-6 \mathrm{~m} / \mathrm{s}$. The geometric and arithmetic means of the K-values for the same zone are $9.8 \mathrm{E}-7 \mathrm{~m} / \mathrm{s}$ and $1.7 \mathrm{E}-6 \mathrm{~m} / \mathrm{s}$, respectively. As shown on Table 3-2, the highest K-value for the tested deep waterbearing zone (saturated sound bedrock) is $3.5 \mathrm{e}-7 \mathrm{~m} / \mathrm{s}$. The geometric and arithmetic means of K -value for the same zone are
$4.0 \mathrm{E}-8 \mathrm{~m} / \mathrm{s}$ and $9.8 \mathrm{E}-8 \mathrm{~m} / \mathrm{s}$, respectively. Considering the approximate thicknesses of shallow and deep water-bearing zones as well as the arithmetic K-values for the noted zones, the weighted K -value is estimated $7.3 \mathrm{E}-7 \mathrm{~m} / \mathrm{s}$.

3.4 Groundwater Quality

To assess the suitability for discharging pumped groundwater into the sewers owned by the City of Toronto during dewatering activities, two (2) groundwater samples were collected from monitoring wells BH 7 on November 30, 2021, and BH 203 on August 4, 2022, using a peristaltic pump. Prior to collecting the noted water samples, approximately three (3) standing well volumes of groundwater were purged from the referred well. The samples were collected unfiltered and placed into precleaned laboratory-supplied vials and/or bottles provided with analytical test group specific preservatives, as required. Dedicated nitrile gloves were used during sample handling. The groundwater samples were submitted for analysis to Bureau Veritas Laboratory, a CALA certified independent laboratory in Mississauga, Ontario. Analytical results are provided in Appendix E. Table 3-3 summarizes exceedance(s) of the Sanitary (Table 1) and Storm (Table 2) Sewer Use By-Law parameters.

When comparing the chemistry of the collected groundwater samples to the City of Toronto Sanitary and Combined Sewer Discharge Criteria (Table 1), there were no parameter exceedances to be reported.

When comparing the chemistry of the collected groundwater samples to the City of Toronto Storm Sewer Discharge Criteria (Table 2), the concentrations of Total Suspended Solids (TSS) and Total Manganese (Mn) exceeded the applicable guidelines.

Reporting detection limits (RDLs) were below the Sewer Use By-Law parameter criteria of Tables 1 and 2.
Table 3-3: Summary of Analytical Results

| | | City of Toronto
 Sanitary and
 Combined Sewer
 Discharge Limit
 (Table 1) | City of Toronto
 Storm Sewer
 Discharge Limit
 (Table 2) | Concentration |
| :---: | :---: | :---: | :---: | :---: | :---: |

Notes:
Bold - Exceeds City of Toronto Storm Sewer Discharge Limit (Table 2).

For the short-term dewatering system (construction phase), it is anticipated that TSS levels and some other parameters (for example, Total Metals) in the pumped groundwater become elevated and exceed both Sanitary and Storm Sewer Use By-Law limits. To control the concentration of TSS and associated metals, it is recommended that a suitable treatment method be implemented (filtration or decantation facilities and/ or any other applicable treatment system) during construction dewatering activities prior to discharging to the applicable sewer system. The specifications of the treatment system will need to be adjusted to the reported water quality results by the treatment contractor/process engineer.

An agreement to discharge into the sewers owned by the City of Toronto will be required prior to releasing dewatering effluent.

4 Dewatering Assessment

The dimensions of the proposed structure to support the dewatering assessment are summarized in Table 4-1 below.

Table 4-1 Building Dimensions for Dewatering Assessment

Input Parameter	Assumption	Units	Notes
Number of Subgrade Levels	3 Levels (P3)	-	
Ground Surface Elevation	127.4	masl	Highest ground surface elevation at the Site (EXP, 2021 and 2022)
Top of Slab Elevation	116.9	masl	Based on the architectural drawings, the top of slab is anticipated to be 10.5 meters below ground surface (Appendix H).
Lowest Footing Elevation	115.40	masl	The lowest foundation elevation as per the geotechnical report (EXP, 2022)
Excavation Area (Length x Width)	$\begin{gathered} \sim 3,335 \\ (50 \times 49) \end{gathered}$	$\begin{gathered} \mathrm{m}^{2} \\ (\mathrm{~m} \times \mathrm{m}) \end{gathered}$	Approximate area (length x width) of Site for the proposed development as per parking level 3 and 2 drawing number A101 dated March 20, 2023 prepared by Design Architect 3XN USA LLc.

4.1 Dewatering Flow Rate Estimate and Zone of Influence

The Dupuit-Forcheimer equation for radial flow to both sides of an excavation through an unconfined aquifer resting on a horizontal impervious surface was used to obtain a flow rate estimate. Dewatering flow rate is expressed as follows:

$$
\begin{gathered}
Q_{w}=\frac{\pi K\left(H^{2}-h^{2}\right)}{\operatorname{Ln}\left[\frac{R_{o}}{r_{e}}\right]} \\
r_{e}=\frac{a+b}{\pi} \quad R_{o}=R_{c j}+r_{e}
\end{gathered}
$$

Where:

```
Qw = Rate of pumping ( \(\mathrm{m}^{3} / \mathrm{s}\) )
\(X \quad=\) Length of excavation (m)
\(\mathrm{K} \quad=\) Hydraulic conductivity ( \(\mathrm{m} / \mathrm{s}\) )
\(\mathrm{H} \quad=\) Hydraulic head beyond the influence of pumping (static groundwater elevation) (m)
\(h \quad=\) Hydraulic head above the base of aquifer in an excavation (m)
Ro \(\quad=\) Radius of influence ( \(m\) )
\(R_{c j} \quad=\) Cooper-Jacob's radius of influence ( \(m\) )
\(r_{e} \quad=\) Equivalent perimeter (m)
\(a \quad=\) Length of the excavation area (m)
\(b \quad=\) Width of the excavation area ( m )
```

It is expected that the initial dewatering rate will be higher to remove groundwater from within the overburden formation. The dewatering rates are expected to decrease once the target water level is achieved in the excavation footprint as groundwater will have been removed, primarily from storage, resulting in lower seepage rates into the excavation.

4.2 Cooper-Jacob's Radius of Influence

The radius of influence (Rcj) for the construction dewatering was calculated based on Cooper-Jacob's equation. This equation is used to predict the distance at which the drawdown resulting from pumping is negligible.

The estimated radius of influence due to pumping is based on Cooper-Jacob's formula as follows:

$$
\mathrm{R}_{c j}=\sqrt{2.25 K D t / s}
$$

Where:
Ro = Estimated radius of influence (m)
D = Aquifer thickness (original saturated thickness) (m)
K $\quad=$ Hydraulic conductivity (m / s)
S = Storage coefficient
$\mathrm{t} \quad=$ Duration of pumping (s)

4.3 Stormwater

Additional pumping capacity may be required to maintain dry conditions within the excavation during and following significant precipitation events. Therefore, the dewatering rates at the Site should also include removing stormwater from the excavation.

A 15 mm precipitation event was utilized for estimating the stormwater volume. The calculation of the stormwater volume is included in Appendix E.

The estimate of the stormwater volume only accounts for direct precipitation into the excavation. The dimensions of the excavation are considered in the dewatering calculations. Runoff which originated outside of the excavation's footprint is excluded and it should be directed away from the excavation.

During precipitation events greater than 15 mm (ex: 100-year storm), measures should be taken by the contractor to retain stormwater onsite in a safe manner to not exceed the allowable water taking and discharge limits, as necessary. A two (2) and a one hundred (100) year storm event over a 24 -hour period are 57.0 and 124.4 mm , which would produce $191 \mathrm{~m}^{3}$ and $417 \mathrm{~m}^{3}$ stormwater volume (refer to Appendix F).

4.4 Results of Dewatering Rate Estimates

4.4.1 Construction Dewatering Rate Estimate

For this assessment, it was assumed that the proposed construction plans include an excavation with shoring extending to the Site boundaries. EXP should be retained to review the assumptions outlined in this section, should the assumed shoring design change. Short-term (construction) dewatering calculations are presented in Appendix F.

Pits (elevator, sump pits) are assumed to have the same excavation depth and dewatering target as the main excavation; deeper pits may require localized dewatering and revised dewatering estimates.

Based on the assumptions provided in this report, the results of the dewatering rate estimate can be summarized as follows:

Table 4-2 Summary of Construction Dewatering Rate

Dewatering Estimates
With three (3) Levels of
Description
Underground Parking (L/day)

Total Volume (L/day) Short Term Discharge of Groundwater (Construction dewatering) without Safety Factor (including precipitation)
134,000

Total Volume (L/day) Short Term Discharge of Groundwater (Construction dewatering) with Safety Factor of 2 (including precipitation)

Total Volume (L/day) Short Term Discharge of Groundwater (construction dewatering) with Safety Factor of 2 (excluding Precipitation) for EASR

The peak dewatering flow rates does not account for flow from utility beddings and variations in hydrogeological properties beyond those encountered during this investigation.

Local dewatering may be required for pits (elevator pits, sump pits), if these extend deeper than the dewatering target. Local dewatering is not considered to be part of this assessment. Dewatering estimates should be reviewed once the pit dimensions are available.

Local dewatering may be required for pits (elevator pits, sump pits, raft) and for localized areas with permeable, soft, or wet soil conditions. Local dewatering is not considered to be part of this assessment, but contractor should be ready to install additional system to manage such conditions. Dewatering estimates should be reviewed once the pit dimensions are available.

All grading around the perimeter of the excavation should be graded away from the shoring the systems and ramp/site access to redirect runoff away from excavation.
The dewatering assumptions are based on using shoring system without open cuts and sloped excavations.

If groundwater cutoff systems (ex: caisson walls, sheet piles) are installed, these should be designed for maximal hydrostatic pressure for shallow and deep water levels, without dewatering on the outer side of the groundwater cutoff. Soldier pile and lagging and caisson wall systems should be designed to account for shallow groundwater conditions and take into consideration that dewatering systems may not provide fully dewatered soil conditions.

All grading around the perimeter of the construction Site should be graded away from the shoring the system.

The contractor is responsible for the design of the dewatering systems (depth of wells, screen length, number of wells, spacing sand pack around screens, prevent soil loss etc.) to ensure that dry conditions are always maintained within the excavation at all costs.

Dewatering should be monitored using dedicated monitoring wells within and around the perimeter of the excavation, and these wells should be monitored using manual measurements and with electronic data loggers; records should be maintained on site to track dewatering progress. Discharge rates should be monitored using calibrated flow meters and records of dewatering progress, and daily precipitation as per MECP requirements should be maintained.

4.4.2 Post-Construction Dewatering Rate Estimate

Based on the newly adopted policy by the City of Toronto, effective from January 1, 2022, long-term groundwater discharge from foundation drainage systems will not be permitted to the City of Toronto storm, sanitary and combined sewer system.

Therefore, it is our understanding that considered area of the proposed underground parking will be constructed as a watertight (bathtub) structure, which will bear the hydrostatic pressure on underground floors and side walls during the post construction phase. It is assumed that pits (elevator, sump) will also be completed as watertight structures (without drainage).

Since the proposed watertight foundation prevents groundwater seeping into the underground areas, a sub-drain system and long-term dewatering will not be required to manage groundwater seepage during post-construction phase. As such, discharging groundwater into the City's sewer system will not be required from the underground areas, during the post development phase of the project.

4.5 MECP Water Taking Permits

4.5.1 Short-Term Discharge Rate (Construction Phase)

In accordance with the Ontario Water Resources Act, if the water taking for the construction dewatering is more than 50,000 L/day but less than 400,000 L/day, then an online registration in the Environmental Activity and Sector Registry (EASR) with the MECP will be required. If groundwater dewatering rates onsite exceed 400,000 L/day, a Category 3 Permit to Take Water (PTTW) will be required from the MECP.

As of July 1, 2021, an amendment of O. Reg. 63/16 has come into effect and replaced the former subsection 7 (5) such that the EASR water taking limit of 400,000 L/day would apply to groundwater takings of each dewatered work area only, excluding stormwater.

The dewatering estimate including a safety factor is greater than 50,000 L/day and less than 400, $000 \mathrm{~L} /$ day as shown in Table 4-2. The MECP construction dewatering rate excludes the precipitation amount and is the rate used for the permit application. Based on the MECP construction dewatering an EASR will be required to facilitate the construction dewatering program of the Site.

A Discharge Plan (dewatering sketch, sewer discharge agreement) must be developed and applied for any discharges from the Site. Monitoring of both water quantity and water quality must be carried out for the entire duration of the construction dewatering phase. During this phase, the Discharge Plan and the daily water taking records must be available onsite.

The EASR, Discharge Plan, hydrogeological investigation report, and geotechnical assessment of settlements must also be available at the construction Site during the entire construction dewatering. EXP should be notified immediately about any changes to the construction dewatering schedule or design, since the EASR will need to be updated to reflect these modifications. Altogether, the hydrogeological report, EASR, Discharge Plan and geotechnical assessment constitute the Water Taking Plan which needs to be available onsite during the construction dewatering.

4.5.2 Long-Term Discharge Rate (Post Construction Phase)

Since the proposed watertight foundation prevents groundwater seeping into the underground areas, a sub-drain system and long-term dewatering will not be required to manage groundwater seepage during post-construction phase. As such, PTTW and discharging groundwater into the City's sewer system will not be required from the underground areas, during the post development phase of the project.

5 Environmental Impact

5.1 Surface Water Features

The Site is within the Black Creek - Humber River Outlet watershed. No surface water features exist onsite. The nearest surface water feature is Humber River, approximately located 350 meters southwest of the Site boundary. Lake Ontario is approximately 8.5 km from the Site boundary to the southeast (Appendix G).

Based on the Toronto Region and Conservation Authority floodplain database, the Site is not within the floodplain areas (Appendix G).

Due to the limited extent of zone of influence and the wide distance to the nearest surface water feature, no detrimental impacts on surface water features are expected during construction activities.

5.2 Groundwater Sources

Well Records from the MECP Water Well Record (WWR) Database were reviewed to determine the presence and number of water supply wells within a 500 m radius of the Site boundaries. Given that the dewatering zone of influence is limited, no dewatering related impact is expected on the water wells in the area.

5.3 Geotechnical Considerations

As per the MECP technical requirement for PTTW and EASRs, the geotechnical assessment of the stability of the soils due to water taking (ex: settlement, soil loss, subsidence, etc.) is required. The water taking should not have unacceptable interference on soils and underground structures (foundations, utilities, etc.).

A letter related to geotechnical issues as it pertains to the Site is required to be completed under a separate cover.

5.4 Groundwater Quality

It is our understanding that the potential effluent from the dewatering system during the construction will be released to the municipal sewer system. As such, the quality of groundwater discharge is required to conform the City of Toronto Sewer Use By-Law.

Dewatering may induce migration of contaminants within the zone of influence and beyond due to changing hydraulic gradients, hydrogeological conditions beyond Site boundaries and preferential pathways in utility beddings etc. The water quality sampling conducted as part of this assessment was performed under static conditions. As a result, monitoring may be required during dewatering activities to monitor potential migration, and this should be performed more frequently during early dewatering stages.

For the Short-term (construction) discharge to the Sanitary/Storm sewer system (post-development phase) and based on the water quality results, it is recommended to implement a suitable pre-treatment, as required.

The water quality results presented in this report may not be representative of the long-term condition of groundwater quality onsite. As such, regular water quality monitoring is recommended for the post-construction phase as required by the City.

An agreement to discharge into the sewers owned by the City of Toronto will be required prior to releasing dewatering effluent.

5.5 Well Decommissioning

In conformance with Regulation 903 of the Ontario Water Resources Act, the installation and eventual decommissioning of any dewatering system wells or monitoring wells must be completed by a licensed well contractor. This will be required for all wells that are no longer in use.

6 Conclusions and Recommendations

Based on the findings of the Hydrogeological Investigation, the following conclusions and recommendations are provided:

When comparing the chemistry of the collected groundwater samples to the City of Toronto Sanitary and Combined Sewer Discharge Criteria (Table 1), there were no parameter exceedances to be reported.

When comparing the chemistry of the collected groundwater samples to the City of Toronto Storm Sewer Discharge Criteria (Table 2), the concentrations of Total Suspended Solids (TSS) and Total Manganese (Mn) exceeded the applicable guidelines..

Based on the assumptions outlined in this report, the estimated peak dewatering rate for proposed construction activities is approximately 230,000 L/Day This is the rate which will be required to be discharged to the municipal sewer system.

The estimated MECP dewatering rate for proposed construction activities is approximately194,000 L/Day. As the dewatering flow rate estimate is between $50,000 \mathrm{~L}$ /day and $400,000 \mathrm{~L} /$ day, an EASR will be required to facilitate the construction dewatering program for the Site.
Since the proposed watertight foundation prevents groundwater seeping into the underground areas, a sub-drain system and long-term dewatering will not be required to manage groundwater seepage during post-construction phase. As such, PTTW and discharging groundwater into the City's sewer system will not be required from the underground areas, during the post development phase of the project.
The construction dewatering discharge volume is based on the assumptions outlined in this report. Any variations in hydrogeological conditions beyond those encountered as part of this preliminary investigation may significantly influence the discharge volume.

For the short-term dewatering system (construction phase), it is anticipated that TSS levels and some other parameters (for example, Total Metals) in the pumped groundwater may become elevated and exceed both, Sanitary and Storm Sewer Use By-Law limits. To control the concentration of TSS and associated metals, it is recommended that a suitable treatment method be implemented (filtration or decantation facilities and/ or any other applicable treatment system) during construction dewatering activities to discharge to the applicable sewer system. The specifications of the treatment system will need to be adjusted to the reported water quality results by the treatment contractor/process engineer.

As per the MECP technical requirement for EASR, the geotechnical assessment of the stability of the soils due to water taking (ex: settlement, soil loss, subsidence etc.) is required. The water taking should not have unacceptable interference on soils and underground structures (foundations, utilities etc.). A letter related to geotechnical issues as it pertains to the Site is required to be completed under a separate cover.

An agreement to discharge into the sewers owned by the City of Toronto will be required prior to releasing dewatering effluent.

The EASR registration allows construction dewatering discharge of up to 400,000 L/day. A Discharge Plan (dewatering sketch, sewer discharge agreement) must be developed and applied for any discharges from the Site. The Discharge Plan and monitoring for both water quantity and water quality must be carried at the Site during the entire construction dewatering phase. The daily water taking records must be maintained onsite for the entire construction dewatering phase. The EASR, Discharge Plan, hydrogeological investigation report, and geotechnical assessment of settlements must always also be available at the construction Site for the entire construction dewatering. EXP should be notified immediately about any changes to the construction dewatering schedule or design, since EASR will need to be updated to reflect these modifications. The hydrogeological report, EASR, Discharge Plan and geotechnical assessment constitutes the Water Taking Plan which needs to be available onsite for the duration of construction dewatering.

In conformance with Regulation 903 of the Ontario Water Resources Act, the installation and eventual decommissioning of any dewatering system wells or monitoring wells must be completed by a licensed well contractor. This will be required for all wells that are no longer in use.

The conclusions and recommendations provided above should be reviewed in conjunction with the entirety of the report. They assume that the present design concept described throughout the report will proceed to construction. This report is solely intended for the construction and long-term dewatering assessments. Any changes to the design concept may result in a modification to the recommendations provided in this report.

7 Limitations

This report is based on a limited investigation designed to provide information to support an assessment of the current hydrogeological conditions within the study area. The conclusions and recommendations presented within this report reflect Site conditions existing at the time of the assessment. EXP must be contacted immediately, if any unforeseen Site conditions are experienced during construction activities. This will allow EXP to review the new findings and provide appropriate recommendations to allow the construction to proceed in a timely and cost-effective manner.

Our undertaking at EXP, therefore, is to perform our work within limits prescribed by our clients, with the usual thoroughness and competence of the geoscience/engineering profession. No other warranty or representation, either expressed or implied, is included or intended in this report.

This report was prepared for the exclusive use of 21 John Lev Inc. This report may not be reproduced in whole or in part, without the prior written consent of EXP, or used or relied upon in whole or in part by other parties for any purposes whatsoever. Any use which a third party makes of this report, or any part thereof, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

We trust that this information is satisfactory for your purposes. Should you have any questions or comments, please do not hesitate to contact this office.

Sincerely,
EXP Services Inc.

Yogirajsinh Rena, B.Sc.,C.Tech.
Groundwater Scientist
Environmental Services

Francois Chattier, M.Sc., P.Geo. Discipline Manager, Hydrogeology
Environmental Services

Amar Neku, Ph.D., P.Eng., P.Geo.
Senior Hydrogeologist
Environmental Services

8
 References

1. 3XN USA LLC (July 22, 2022), Draft Architectural Drawings, South Station Street, 13-21 John Street / 30-40 South Station Street, Toronto, ON, prepared for Devron.
2. Cashman and Preene (2013) Groundwater Lowering in Construction, 2nd Edition.
3. Chapman, L.J. and Putnam, D.F. (2007). Physiography of Southern Ontario, 3rd Edition, Ontario Geological Survey.
4. EXP Services Inc. (December 9, 2021), Preliminary Geotechnical Investigation, Proposed Muti-Storey Mixed-Use Development 13, 15, 17, 19 and 21 John Street and 36, 38 and 40 South Station Street, Toronto, Ontario, prepared for Devron Developments.
5. EXP Services Inc. (September 9, 2022), Supplementary Geotechnical Investigation, Proposed Multi-Storey Mixed-Use Development 13, 15, 17, 19 and 21 John Street and 36, 38 and 40 South Station Street, Toronto, Ontario, prepared for 21 John Dev Inc.
6. J.P. Powers, A.B. Corwin, P.C. Schmall and W.E. Kaeck (2007). Construction Dewatering and Groundwater Control, Third Edition.
7. Ministry of Northern Development and Mines (May, 2012). OGS Earth. Retrieved from (http://www.mndm.gov.on.ca/en/mines-and-minerals/applications/ogsearth).
8. Oak Ridges Moraine Groundwater Program. Accessed to the website in September 2022 (https://oakridgeswater.ca/)
9. The Ontario Ministry of Transportation. Accessed to the website in September 2022 (IDF Curve Look-up - Ministry of Transportation (gov.on.ca))
10. Toronto and Region Conservation (2008), Humber River State of the Watershed Report - Geology and Groundwater Resources.

EXP Services Inc 13, 15, 17, 19, \& 21 John Street and 36, 38, \& 40 South Station Street, Toronto, Ontario Hydrogeological Investigation BRM-21021990-A0 Revised: April 17, 2023

Figures

EXP Services Inc 13, 15, 17, 19, \& 21 John Street and 36, 38, \& 40 South Station Street, Toronto, Ontario Hydrogeological Investigation BRM-21021990-A0 Revised: April 17, 2023

Appendix A - MECP WWR Summary Table

	IImbilymily	Immin
1	IIIII	II
	\#	4
1		
		IIIm
,	milymily	\|wit
	мпй	\%\%
		IIIIIIII
		Nimmin
		llillill

EXP Services Inc 13, 15, 17, 19, \& 21 John Street and 36, 38, \& 40 South Station Street, Toronto, Ontario Hydrogeological Investigation BRM-21021990-A0 Revised: April 17, 2023

Appendix B - Borehole Logs

EXP Services Inc 13, 15, 17, 19, \& 21 John Street and 36, 38, \& 40 South Station Street, Toronto, Ontario Hydrogeological Investigation BRM-21021990-A0 Revised: April 17, 2023

Appendix C - Groundwater Elevation Summary

Appendix C: Groundwater Elevation Summary
13, 15, 17, 19, \& 21
BRM-21021990-A0

Monitoring Well ID	Ground Surface Elevation (masl)	Approximate Full Well Depth (mbgs)	Minimum GW Elevation (masl)	Maximum GW Elevation (masl)	Depth	30-Nov-21	3-Dec-21	18-Jan-22	29-Jul-22	4-Aug-22	18-Aug-22	13-Sep-22	4-Oct-22	20-Oct-22
BH 1	127.25	4.53	125.45	125.65	mbgs	1.62	1.80	1.76	0.60	1.63	1.60	1.75	1.75	1.72
					masl	125.63	125.45	125.49	126.65	125.62	125.65	125.50	125.50	125.53
BH 2	127.33	4.34	125.39	125.60	mbgs	1.73	1.85	1.89	1.87	1.90	1.89	1.92	1.81	1.94
					masl	125.60	125.48	125.44	125.46	125.43	125.44	125.41	125.52	125.39
BH 3	127.38	4.39	125.33	125.61	mbgs	1.77	1.88	1.90	2.05	1.99	1.96	1.96	1.97	1.99
					masl	125.61	125.50	125.48	125.33	125.39	125.42	125.42	125.41	125.39
BH 4	127.32	3.77	125.45	125.84	mbgs	1.48	1.71	1.82	1.58	1.60	1.60	1.87	1.69	1.70
					masi	125.84	125.61	125.50	125.74	125.72	125.72	125.45	125.63	125.62
BH 5	126.66	4.40	125.18	125.45	mbgs	1.21	1.28	1.48	1.39	1.38	1.39	1.40	1.43	1.42
					masl	125.45	125.39	125.18	125.27	125.28	125.27	125.26	125.23	125.24
BH 6	126.84	5.80	124.93	125.34	mbgs	1.50	1.60	1.91	1.70	1.80	1.70	1.80	1.80	1.79
					masl	125.34	125.24	124.93	125.14	125.04	125.14	125.04	125.04	125.05
BH 7	127.01	5.26	124.78	125.12	mbgs	1.90	2.06	2.23	2.15	2.12	2.11	2.11	2.12	2.13
					masi	125.12	124.95	124.78	124.86	124.89	124.90	124.90	124.89	124.88
BH201	127.40	15.43	116.93	118.70	mbgs	-	-	-	9.63	10.47	9.95	9.16	8.70	8.70
					masi	-	-	-	117.77	116.93	117.45	118.24	118.70	118.70
BH202	126.76	15.13	116.64	116.82	mbgs	-	-	-	1.62	10.12	9.94	9.99	10.06	10.01
					masl	-	-	-	125.14	116.64	116.82	116.77	116.70	116.75
BH203	126.89	15.27	117.48	117.79	mbgs	-	-	-	2.50	9.41	9.24	9.10	9.29	9.27
					masl	-	-	-	124.39	117.48	117.65	117.79	117.60	117.62
BH204	126.89	15.43	116.58	116.71	mbgs	-	-	-	4.60	10.28	10.18	10.29	10.31	10.30
					masl	-	-	-	122.29	116.61	116.71	116.60	116.58	116.59
BH205	126.95	15.34	115.65	115.80	mbgs	-	-	-	2.82	11.30	11.16	11.15	11.19	11.17
					masi	-	-	-	124.13	115.65	115.79	115.80	115.76	115.78

[^0]EXP Services Inc 13, 15, 17, 19, \& 21 John Street and 36, 38, \& 40 South Station Street, Toronto, Ontario Hydrogeological Investigation BRM-21021990-A0 Revised: April 17, 2023

Appendix D - SWRT Procedures and Results

Single Well Response Test Procedure

A Single Well Response Test (SWRT), also known as a bail test or a slug test, is conducted in order to determine the saturated hydraulic conductivity (K) of an aquifer. The method of the SWRT is to characterize the change of groundwater level in a well or borehole over time.

In order to ensure consistency and repeatability, all exp employees are to follow the procedure outlined in this document when conducting SWRTs.

The figure below depicts a schematic of a slug and bail test and the respective water level changes.

\qquad

Slug Test Procedure

Equipment Required

- Copy of a signed health and safety plan
- Copy of the work program
- PPE as required by Site-Specific HASP
- Copy of the monitoring well location plan/site plan
- Waterproof pen and bound field note book
- SWRT field data Entry form
- Disposable gloves
- Duct tape
- Deionized water
- Alconox (phosphate free detergent)
- Spray bottles
- Electronic water level meter and spare batteries
- Solid PVC or stainless steel slug of known volume or clean water
- String (nylon)
- Water pressure transducer (data logger) and baro-logger
- Watch or stop watch with second hand
- Plastic sheeting

Testing Procedure

1. Remove cap from well and collect static water level
2. Remove waterra tubing/bailer and place in garbage bag. Record static water level measurement again.
3. Lower the slug into the well and record the dynamic water level.
4. Record the drawdown (for the slug test) at set five (5) second intervals for the first five (5) minutes, then reduce to every one (1) minute.
5. Continue recording the drawdown until 95% recovery is reached. To calculate this value: Find the difference between the dynamic water level and the static water level, then multiply by 95% (.95). Add the resulting value to the dynamic water level.
(Static Water Level - Dynamic Water Level). 95 + Static Water Level = 95\% Recovery Value
6. Once complete, replace the waterra tubing/bailer and re-secure the well cap

Note: If the well is deep, more than one slug may be inserted by attaching the slugs to a series.

Slugs must be washed with methanol, then lab grade soap, and then rinsed with de-ionized water after each use.
\qquad

Based on the recorded observations, the hydraulic conductivity (in m / s) of the aquifer will be determined. In order to determine the hydraulic conductivity; the well diameter, radius of the borehole and length of the screen will also be required.

Bail Test Procedure

Equipment Required

- 20 L (5 gal) Graduated pail
- Stop watch or watch with seconds
- Garbage bags
- Water level meter
- Field sheets/log book
- Latex Gloves
- Bailer and Rope

Procedure

1. Remove cap from well and collect static water level.
2. If using a bailer:
a. Affix the rope to the bailer.
b. Remove the waterra tubing and place in garbage bag
c. Record static water level measurement again.
d. Record how much water was removed by either counting the number of full bailers or emptying removed water into a container.
e. Quickly lower the bailer into the well and remove.
f. Continue this process until the water level will reduce no further.
g. Record the dynamic water level.
3. If using waterra to bail the water:
a. Pump the water into graduated bucket until the water level will reduce no further.
b. Record how much water has been removed.
c. Record the dynamic water level.
4. Record the recovery at set five (5) second intervals for the first (5) minutes, then reduce to every one (1) minute.
5. Continue recording the drawdown/recovery until 95\% recovery is reached.
6. Once complete, replace any waterra tubing that may have been removed from the well and re-secure the well cap.
\qquad

SWRT BH 1 FALLING HEAD TEST
Data Set: C:I...|BH 1.aqt
Date: 12/14/21
Time: 14:54:59
PROJECT INFORMATION
Company: EXP Services Inc
Client: Devron Developments
Project: BRM-21021990-A0
Location: 13 John Street, Toronto
Test Well: BH 1
Test Date: December 3, 2021

AQUIFER DATA

Saturated Thickness: $\underline{2.723 \mathrm{~m}}$
Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH 1)

Static Water Column Height: 2.723 m Screen Length: 3. m
Well Radius: $0.0 \overline{0762} \mathrm{~m}$

SOLUTION

Aquifer Model: Unconfined
$\mathrm{K}=\underline{7.726 \mathrm{E}-8} \mathrm{~m} / \mathrm{sec}$

Solution Method: Hvorslev
$\mathrm{y} 0=\underline{0.907} \mathrm{~m}$

SWRT BH 2 - FALLING HEAD
Data Set: C:\...\BH 2 Falling.aqt
Date: 12/14/21
Time: 14:58:51
PROJECT INFORMATION
Company: EXP Services Inc
Client: Devron Developments
Project: BRM-21021990-A0
Location: 13 John Street, Toronto
Test Well: BH 2
Test Date: December 3, 2021

AQUIFER DATA

Saturated Thickness: 2.495 m
Anisotropy Ratio (Kz/Kr): 1.

Static Water Column Height: 2.495 m
Screen Length: 3. m
Well Radius: $0.0 \overline{0762} \mathrm{~m}$

SOLUTION

Aquifer Model: Unconfined
$K=5.661 \mathrm{E}-7 \mathrm{~m} / \mathrm{sec}$

Solution Method: Hvorslev
$\mathrm{y} 0=\underline{0.2058} \mathrm{~m}$

SWRT BH 3 FALLING HEAD

Data Set: C:\...|BH 3.aqt
Date: 12/14/21

Time: 15:03:38
PROJECT INFORMATION
Company: EXP Services Inc Client: Devron Developments Project: BRM-21021990-A0
Location: 13 John Street, Toronto
Test Well: BH 3
Test Date: December 3, 2021

AQUIFER DATA

Saturated Thickness: 2.511 m
Anisotropy Ratio (Kz/Kr): 1.
WELL DATA (BH 3)
Static Water Column Height: 2.511 m Screen Length: 3. m
Well Radius: 0.0762 m

SOLUTION

Aquifer Model: Unconfined
$\mathrm{K}=5.194 \mathrm{E}-7 \mathrm{~m} / \mathrm{sec}$

Solution Method: Hvorslev
$\mathrm{y} 0=\underline{0.1889 \mathrm{~m}}$

SWRT BH 4 FALLING HEAD
Data Set: C:\...|BH 4 Falling.aqt
Date: 12/14/21
Time: 15:08:29
PROJECT INFORMATION
Company: EXP Services Inc
Client: Devron Developments
Project: BRM-21021990-A0
Location: 13 John Street, Toronto
Test Well: BH 4
Test Date: December 3, 2021
AQUIFER DATA
Saturated Thickness: 2.053 m
Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH 4)

Initial Displacement: 0.507 m
Total Well Penetration Depth: 3. m
Casing Radius: 0.0254 m

Static Water Column Height: $\underline{2.053 \text { m }}$ Screen Length: 3. m
Well Radius: 0.0762 m

SOLUTION

Aquifer Model: Unconfined
$\mathrm{K}=\underline{2.611 \mathrm{E}-6} \mathrm{~m} / \mathrm{sec}$

Solution Method: Hvorslev
$\mathrm{y} 0=\underline{0.3093 \mathrm{~m}}$

SWRT BH 5 FALLING HEAD

Data Set: C:I...|BH 5.aqt
Date: 12/14/21

Time: 15:11:55
PROJECT INFORMATION
Company: EXP Services Inc Client: Devron Developments Project: BRM-21021990-A0
Location: 13 John Street, Toronto
Test Well: BH 5
Test Date: December 3, 2021

AQUIFER DATA

Saturated Thickness: 3.123 m
Anisotropy Ratio (Kz/Kr): 1.
WELL DATA (BH 5)
Static Water Column Height: 3.123 m Screen Length: 3. m
Well Radius: 0.0762 m

SOLUTION

Aquifer Model: Unconfined
$\mathrm{K}=2.794 \mathrm{E}-6 \mathrm{~m} / \mathrm{sec}$

Solution Method: Hvorslev
$\mathrm{y} 0=0.9383 \mathrm{~m}$

SWRT BH 6 FALLING HEAD

Data Set: $\mathrm{C}: \$....|BH 6 Falling.aqt
Date: 12/14/21
Time: 15:16:47
PROJECT INFORMATION
Company: EXP Services Inc Client: Devron Developments Project: BRM-21021990-A0
Location: 13 John Street, Toronto
Test Well: BH 6
Test Date: December 3, 2021

Saturated Thickness: 4.192 m
Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH 6)

Static Water Column Height: 4.192 m Screen Length: 3. m
Well Radius: 0.0762 m

SOLUTION

Aquifer Model: Unconfined
$K=3.643 \mathrm{E}-6 \mathrm{~m} / \mathrm{sec}$

Solution Method: Hvorslev
$\mathrm{y} 0=\underline{0.67} \mathrm{~m}$

SWRT BH 7 FALLING HEAD

Data Set: C:\...\BH 7 Falling.aqt
Date: 12/14/21

Time: 15:19:44
PROJECT INFORMATION

Company: EXP Services Inc Client: Devron Developments Project: BRM-21021990-A0
Location: 13 John Street, Toronto
Test Well: BH 7
Test Date: December 3, 2021

AQUIFER DATA

Saturated Thickness: 3.198 m
Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH 7)

Static Water Column Height: 3.198 m Screen Length: 3. m
Well Radius: 0.0762 m

SOLUTION

Aquifer Model: Unconfined
$\mathrm{K}=1.5 \mathrm{E}-6 \mathrm{~m} / \mathrm{sec}$

Solution Method: Hvorslev
$\mathrm{y} 0=\underline{0.3014} \mathrm{~m}$

BH201 - FALLING HEAD

Data Set: I:I...|BH201.aqt
Date: 08/17/22
Time: 13:00:30
PROJECT INFORMATION
Company: EXP
Client: Devron Developments
Project: BRM-21021990-A0
Location: 13-21 John St, Toronto
Test Well: BH201
Test Date: August 4, 2022

Saturated Thickness: 4.96 m
Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH201)

Initial Displacement: 1.548 m Total Well Penetration Depth: 4.96 m Casing Radius: 0.0254 m

Static Water Column Height: 4.96 m
Screen Length: 3. m
Well Radius: 0.0762 m

SOLUTION

Aquifer Model: Confined
$\mathrm{K}=2.438 \mathrm{E}-8 \mathrm{~m} / \mathrm{sec}$

Solution Method: Hvorslev
$\mathrm{y} 0=\underline{1.526} \mathrm{~m}$

BH202 - FALLING HEAD

Data Set: I:I...|BH202.aqt
Date: 08/17/22
Time: 13:02:44
PROJECT INFORMATION
Company: EXP
Client: Devron Developments
Project: BRM-21021990-A0
Location: 13-21 John St, Toronto
Test Well: BH2O2
Test Date: August 4, 2022

Saturated Thickness: 5.01 m
Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH2O2)

Initial Displacement: 1.668 m Total Well Penetration Depth: 5.01 m Casing Radius: 0.0254 m

Static Water Column Height: 5.01 m
Screen Length: 3. m
Well Radius: 0.0762 m

SOLUTION

Aquifer Model: Confined
$K=\underline{9.148 \mathrm{E}-8} \mathrm{~m} / \mathrm{sec}$

Solution Method: Hvorslev
$\mathrm{y} 0=\underline{1.662} \mathrm{~m}$

BH 203 - FALLING HEAD TEST

Data Set: \...\BH 203_Falling Head.aqt
Date: 08/19/22
Time: 09:29:03

PROJECT INFORMATION

Company: EXP
Client: Devron Developments
Project: BRM-21021990-A0
Location: 13-21 John St, Toronto
Test Well: BH2O3
Test Date: August 18, 2022

AQUIFER DATA

Saturated Thickness: 6.03 m
Anisotropy Ratio (Kz/Kr): 1.
WELL DATA (BH 203)
Initial Displacement: 1.125 m Total Well Penetration Depth: 6.03 m
Casing Radius: $\underline{0.0254 ~ m ~}$
Static Water Column Height: 6.03 m
Screen Length: 3. m
Well Radius: 0.0762 m

SOLUTION

Aquifer Model: Unconfined
$\mathrm{K}=3.495 \mathrm{E}-7 \mathrm{~m} / \mathrm{sec}$

Solution Method: Hvorslev
$\mathrm{y} 0=\underline{0.9249 \mathrm{~m}}$

BH204 - FALLING HEAD

Data Set: I:I...\BH204.aqt
Date: 08/17/22
Time: 13:05:18
PROJECT INFORMATION
Company: EXP
Client: Devron Developments
Project: BRM-21021990-A0
Location: 13-21 John St, Toronto
Test Well: BH2O4
Test Date: August 4, 2022
AQUIFER DATA
Saturated Thickness: 5.19 m
Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH2O4)

Initial Displacement: 1.531 m Total Well Penetration Depth: 5.19 m Casing Radius: 0.0254 m

Static Water Column Height: 5.19 m Screen Length: 3. m
Well Radius: 0.0762 m

SOLUTION

Aquifer Model: Confined
$\mathrm{K}=1.815 \mathrm{E}-8 \mathrm{~m} / \mathrm{sec}$

Solution Method: Hvorslev
$\mathrm{y} 0=1.53 \mathrm{~m}$

BH205 - FALLING HEAD

Data Set: I:I...|BH205.aqt
Date: 08/17/22
Time: 13:05:59
PROJECT INFORMATION
Company: EXP
Client: Devron Developments
Project: BRM-21021990-A0
Location: 13-21 John St, Toronto
Test Well: BH205
Test Date: August 4, 2022
AQUIFER DATA
Saturated Thickness: 4.1 m
Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH205)

Initial Displacement: 1.629 m Total Well Penetration Depth: 4.1 m Casing Radius: 0.0254 m

Static Water Column Height: 4.1 m
Screen Length: 3. m
Well Radius: 0.0762 m

SOLUTION

Aquifer Model: Confined
$\mathrm{K}=7.419 \mathrm{E}-9 \mathrm{~m} / \mathrm{sec}$

Solution Method: Hvorslev
$\mathrm{y} 0=\underline{1.629} \mathrm{~m}$

EXP Services Inc 13, 15, 17, 19, \& 21 John Street and 36, 38, \& 40 South Station Street, Toronto, Ontario Hydrogeological Investigation BRM-21021990-A0 Revised: April 17, 2023

Appendix E - Laboratory’s Certificates of Analysis

Your P.O. \#: ENV-BRM
Your Project \#: BRM-21021990-AO
Site Location: 13 JOHN ST, TORONTO, ON
Attention: Francois Chartier
exp Services Inc 1595 Clark Blvd
Brampton, ON
CANADA L6T 4V1
Your C.O.C. \#: 886719-08-01

Report Date: 2022/08/12
Report \#: R7250797
Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB \#: C2L9821

Received: 2022/08/04, 19:30
Sample Matrix: Water
\# Samples Received: 1

Analyses	Quantity	Date Extracted	Date Analyzed	Laboratory Method	Analytical Method
Sewer Use By-Law Semivolatile Organics	1	2022/08/05	2022/08/06	CAM SOP 00301	EPA 8270 m
Biochemical Oxygen Demand (BOD)	1	2022/08/05	2022/08/10	CAM SOP-00427	SM 23 5210B m
Chromium (VI) in Water	1	N/A	2022/08/09	CAM SOP-00436	EPA 7199 m
Total Cyanide	1	2022/08/08	2022/08/09	CAM SOP-00457	OMOE E3015 5 m
Fluoride	1	2022/08/08	2022/08/10	CAM SOP-00449	SM 23 4500-F C m
Mercury in Water by CVAA	1	2022/08/08	2022/08/08	CAM SOP-00453	EPA 7470A m
Total Metals Analysis by ICPMS	1	N/A	2022/08/09	CAM SOP-00447	EPA 6020B m
E.coli, (CFU/100mL)	1	N/A	2022/08/04	CAM SOP-00552	MECP E3433
Total Nonylphenol in Liquids by HPLC	1	2022/08/10	2022/08/11	CAM SOP-00313	In-house Method
Nonylphenol Ethoxylates in Liquids: HPLC	1	2022/08/08	2022/08/09	CAM SOP-00313	In-house Method
Animal and Vegetable Oil and Grease	1	N/A	2022/08/10	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2022/08/10	2022/08/10	CAM SOP-00326	EPA1664B m,SM5520B m
Polychlorinated Biphenyl in Water	1	2022/08/08	2022/08/09	CAM SOP-00309	EPA 8082A m
pH	1	2022/08/08	2022/08/10	CAM SOP-00413	SM 4500H+B m
Phenols (4AAP)	1	N/A	2022/08/10	CAM SOP-00444	OMOE E3179 m
Total Kjeldahl Nitrogen in Water	1	2022/08/09	2022/08/10	CAM SOP-00938	OMOE E3516 m
Total PAHs (1)	1	N/A	2022/08/07	CAM SOP - 00301	
Mineral/Synthetic O \& G (TPH Heavy Oil) (2)	1	2022/08/10	2022/08/10	CAM SOP-00326	EPA1664B m,SM5520F m
Total Suspended Solids	1	2022/08/09	2022/08/10	CAM SOP-00428	SM 23 2540D m
Volatile Organic Compounds in Water	1	N/A	2022/08/08	CAM SOP-00228	EPA 8260 Cm

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or

Report \#: R7250797
Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB \#: C2L9821

Received: 2022/08/04, 19:30

implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.
Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.
This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
Reference Method suffix " m " indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
(1) Total PAHs include only those PAHs specified in the sewer use by-by-law.
(2) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil \& Grease

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.
Patricia Legette, Project Manager
Email: Patricia.Legette@bureauveritas.com
Phone\# (905)817-5799
===12
This report has been generated and distributed using a secure automated process.
Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.
exp Services Inc
Client Project \#: BRM-21021990-A0
Site Location: 13 JOHN ST, TORONTO, ON
Your P.O. \#: ENV-BRM
Sampler Initials: YR

TORONTO SANITARY\&STORM SEWER (100-2016)

Bureau Veritas ID				TJA920		
Sampling Date				$2022 / 08 / 04$		
COC Number				$886719-08-01$		
	UNITS	Criteria	Criteria-2	BH 203	RDL	QC Batch

Calculated Parameters

| Total Animal/Vegetable Oil and Grease | mg / L | - | 150 | ND | 0.50 | 8148726 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inorganics | | | | | | |
| Total BOD | mg / L | 15 | 300 | ND | 2 | 8149059 |
| Fluoride (F-) | mg / L | - | 10 | 1.3 | 0.10 | 8153263 |
| Total Kjeldahl Nitrogen (TKN) | mg / L | - | 100 | 3.8 | 0.10 | 8155157 |
| pH | pH | $6.0: 9.5$ | $6.0: 11.5$ | 8.23 | | 8153271 |
| Phenols-4AAP | mg / L | 0.008 | 1.0 | ND | 0.0010 | 8158331 |
| Total Suspended Solids | mg / L | 15 | 350 | 29 | 10 | 8151625 |
| Total Cyanide (CN) | mg / L | 0.02 | 2 | ND | 0.0050 | 8153191 |

Petroleum Hydrocarbons

Total Oil \& Grease	mg / L	-	-	ND	0.50	8157596
Total Oil \& Grease Mineral/Synthetic	mg / L	-	15	ND	0.50	8157600

Miscellaneous Parameters

Nonylphenol Ethoxylate (Total)	mg / L	0.01	0.2	ND	0.005	8153846
Nonylphenol (Total)	mg / L	0.001	0.02	ND	0.001	8158747

Metals

Chromium (VI)	ug / L	40	2000	ND	0.50	8155880
Mercury (Hg)	mg / L	0.0004	0.01	ND	0.00010	8152961
Total Aluminum (AI)	ug / L	-	50000	1400	4.9	8154965
Total Antimony (Sb)	ug / L	-	5000	2.4	0.50	8154965
Total Arsenic (As)	ug / L	20	1000	5.4	1.0	8154965
Total Cadmium (Cd)	ug / L	8	700	ND	0.090	8154965
Total Chromium (Cr)	ug / L	80	4000	ND	5.0	8154965
Total Cobalt (Co)	ug / L	-	5000	0.81	0.50	8154965
Total Copper (Cu)	ug / L	40	2000	1.8	0.90	8154965
Total Lead (Pb)	ug / L	120	1000	ND	0.50	8154965

No Fill	No Exceedance
Grey	Exceeds 1 criteria policy/level
Black	Exceeds both criteria/levels

RDL = Reportable Detection Limit
QC Batch = Quality Control Batch
Criteria: Toronto Storm Sewer Discharge Use By-Law
Criteria-2: Toronto Sanitary and Combined Sewers Discharge Guidelines. Referenced to the Chapter 681.
ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.
exp Services Inc
Client Project \#: BRM-21021990-A0
Site Location: 13 JOHN ST, TORONTO, ON
Your P.O. \#: ENV-BRM
Sampler Initials: YR

TORONTO SANITARY\&STORM SEWER (100-2016)

Bureau Veritas ID				TJA920		
Sampling Date				$2022 / 08 / 04$ $13: 00$		
COC Number				$886719-08-01$		
	UNITS	Criteria	Criteria-2	BH 203	RDL	QC Batch
Total Manganese (Mn)	ug/L	50	5000	$\mathbf{5 2}$	2.0	8154965
Total Molybdenum (Mo)	ug / L	-	5000	16	0.50	8154965
Total Nickel (Ni)	ug / L	80	2000	1.8	1.0	8154965
Total Phosphorus (P)	ug / L	400	10000	ND	100	8154965
Total Selenium (Se)	ug / L	20	1000	ND	2.0	8154965
Total Silver (Ag)	ug / L	120	5000	ND	0.090	8154965
Total Tin (Sn)	ug / L	-	5000	ND	1.0	8154965
Total Titanium (Ti)	ug / L	-	5000	33	5.0	8154965
Total Zinc (Zn)	ug / L	40	2000	ND	5.0	8154965

Semivolatile Organics

Di-N-butyl phthalate	ug / L	15	80	ND	2	8149948
Bis(2-ethylhexyl)phthalate	ug / L	8.8	12	ND	2	8149948
3,3'-Dichlorobenzidine	ug / L	0.8	2	ND	0.8	8149948
Pentachlorophenol	ug / L	2	5	ND	1	8149948
Phenanthrene	ug / L	-	-	ND	0.2	8149948
Anthracene	ug / L	-	-	ND	0.2	8149948
Fluoranthene	ug / L	-	-	ND	0.2	8149948
Pyrene	ug / L	-	-	ND	0.2	8149948
Benzo(a)anthracene	ug / L	-	-	ND	0.2	8149948
Chrysene	ug / L	-	-	ND	0.2	8149948
Benzo(b/j)fluoranthene	ug / L	-	-	ND	0.2	8149948
Benzo(k)fluoranthene	ug / L	-	-	ND	0.2	8149948
Benzo(a)pyrene	ug / L	-	-	ND	0.2	8149948
Indeno(1,2,3-cd)pyrene	ug / L	-	-	ND	0.2	8149948
Dibenzo(a,h)anthracene	ug / L	-	-	ND	0.2	8149948
Benzo(g,h,i)perylene	ug / L	-	-	ND	0.2	8149948
Dibenzo(a,i)pyrene	ug / L	-	-	ND	0.2	8149948

No Fill	No Exceedance
Grey	Exceeds 1 criteria policy/level
Black	Exceeds both criteria/levels

RDL = Reportable Detection Limit
QC Batch = Quality Control Batch
Criteria: Toronto Storm Sewer Discharge Use By-Law
Criteria-2: Toronto Sanitary and Combined Sewers Discharge Guidelines. Referenced to the Chapter 681.
ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.
exp Services Inc
Client Project \#: BRM-21021990-A0
Site Location: 13 JOHN ST, TORONTO, ON
Your P.O. \#: ENV-BRM
Sampler Initials: YR

TORONTO SANITARY\&STORM SEWER (100-2016)

Bureau Veritas ID				TJA920		
Sampling Date				$\begin{gathered} \hline \text { 2022/08/04 } \\ 13: 00 \end{gathered}$		
COC Number				886719-08-01		
	UNITS	Criteria	Criteria-2	BH 203	RDL	QC Batch
Benzo(e)pyrene	ug/L	-	-	ND	0.2	8149948
Perylene	ug/L	-	-	ND	0.2	8149948
Dibenzo(a, ${ }^{\text {j }}$) acridine	ug/L	-	-	ND	0.4	8149948
7H-Dibenzo(c,g) Carbazole	ug/L	-	-	ND	0.4	8149948
1,6-Dinitropyrene	ug/L	-	-	ND	0.4	8149948
1,3-Dinitropyrene	ug/L	-	-	ND	0.4	8149948
1,8-Dinitropyrene	ug/L	-	-	ND	0.4	8149948

Calculated Parameters

Total PAHs (18 PAHs)	ug/L	2	5	ND	1	8147802

Volatile Organics

Benzene	ug / L	2	10	ND	0.40	8151007
Chloroform	ug / L	2	40	ND	0.40	8151007
1,2-Dichlorobenzene	ug / L	5.6	50	ND	0.80	8151007
1,4-Dichlorobenzene	ug / L	6.8	80	ND	0.80	8151007
cis-1,2-Dichloroethylene	ug / L	5.6	4000	ND	1.0	8151007
trans-1,3-Dichloropropene	ug / L	5.6	140	ND	0.80	8151007
Ethylbenzene	ug / L	2	160	ND	0.40	8151007
Methylene Chloride(Dichloromethane)	ug / L	5.2	2000	ND	4.0	8151007
1,1,2,2-Tetrachloroethane	ug / L	17	1400	ND	0.80	8151007
Tetrachloroethylene	ug / L	4.4	1000	ND	0.40	8151007
Toluene	ug / L	2	16	0.72	0.40	8151007
Trichloroethylene	ug / L	7.6	400	ND	0.40	8151007
$\mathrm{p}+\mathrm{m}-X y l e n e$	ug / L	-	-	ND	0.40	8151007
o-Xylene	ug / L	-	-	ND	0.40	8151007
Total Xylenes	ug / L	4.4	1400	ND	0.40	8151007

PCBs

Total PCB	ug/L	0.4	1	ND	0.05	8153748

No Fill	No Exceedance
	Exceeds 1 criteria policy/level
	Black

RDL = Reportable Detection Limit
QC Batch = Quality Control Batch
Criteria: Toronto Storm Sewer Discharge Use By-Law
Criteria-2: Toronto Sanitary and Combined Sewers Discharge Guidelines. Referenced to the Chapter 681.
ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Bureau Veritas Job \#: C2L9821
Report Date: 2022/08/12
exp Services Inc
Client Project \#: BRM-21021990-A0
Site Location: 13 JOHN ST, TORONTO, ON
Your P.O. \#: ENV-BRM
Sampler Initials: YR

TORONTO SANITARY\&STORM SEWER (100-2016)

Bureau Veritas ID				TJA920		
Sampling Date				$2022 / 08 / 04$ $13: 00$		
COC Number				$886719-08-01$		
	UNITS	Criteria	Criteria-2	BH 203	RDL	QC Batch

Microbiological						
Escherichia coli	CFU/100mL	200	-	<10	10	8148836

Surrogate Recovery (\%)	$\%$	-	-	90		8149948
2,4,6-Tribromophenol	$\%$	-	-	76		8149948
2-Fluorobiphenyl	$\%$	-	-	90		8149948
D14-Terphenyl (FS)	$\%$	-	-	84		8149948
D5-Nitrobenzene	$\%$	-	-	82		8149948
D8-Acenaphthylene	$\%$	-	-	71		8153748
Decachlorobiphenyl	$\%$	-	-	94		8151007
4-Bromofluorobenzene	$\%$	-	-	119		8151007
D4-1,2-Dichloroethane	$\%$	-	-	89		8151007
D8-Toluene					-	

No Fill	No Exceedance
Grey	Exceeds 1 criteria policy/level
Black	Exceeds both criteria/levels

RDL = Reportable Detection Limit
QC Batch = Quality Control Batch
Criteria: Toronto Storm Sewer Discharge Use By-Law
Criteria-2: Toronto Sanitary and Combined Sewers Discharge Guidelines. Referenced to the Chapter 681.

Bureau Veritas Job \#: C2L9821
Report Date: 2022/08/12
exp Services Inc
Client Project \#: BRM-21021990-A0
Site Location: 13 JOHN ST, TORONTO, ON
Your P.O. \#: ENV-BRM
Sampler Initials: YR

TEST SUMMARY

| Bureau Veritas ID: | TJA920 |
| ---: | ---: | | Collected: |
| ---: |
| Sample ID: |
| MH $2022 / 08 / 04$ |
| Matrix: |

Test Description
Sewer Use By-Law Semivolatile Organics Instrumentation Batch Extracted Date Analyzed Biochemical Oxygen Demand (BOD) GC/MS DO 8149948 $2022 / 08 / 05$ $2022 / 08 / 06$ Chromium (VI) in Water IC 8149059 $2022 / 08 / 05$ $2022 / 08 / 10$ Adriana Zurita Total Cyanide SKAL/CN 8155880 N/A $2022 / 08 / 09$ Theodora Luck Fluoride ISE 8153191 $2022 / 08 / 08$ $2022 / 08 / 09$ Kruti Jitesh Patel Mercury in Water by CVAA CV/AA 8153263 $2022 / 08 / 08$ $2022 / 08 / 10$ Kien Tran Total Metals Analysis by ICPMS ICP/MS 8152961 $2022 / 08 / 08$ $2022 / 08 / 08$ Jaswinder Kaur E.coli, (CFU/100mL) PL 8154965 N/A $2022 / 08 / 09$ Daniel Teclu Total Nonylphenol in Liquids by HPLC LC/FLU 8148836 N/A $2022 / 08 / 04$ Sonja Elavinamannil Nonylphenol Ethoxylates in Liquids: HPLC LC/FLU 8158747 $2022 / 08 / 10$ $2022 / 08 / 11$ Dennis Boodram Animal and Vegetable Oil and Grease BAL 8153846 $2022 / 08 / 08$ $2022 / 08 / 09$ Dennis Boodram Total Oil and Grease BAL 8148726 N/A $2022 / 08 / 10$ Automated Statchk Polychlorinated Biphenyl in Water GC/ECD 8157596 $2022 / 08 / 10$ $2022 / 08 / 10$ Maulik Jashubhai Patel pH AT 8153748 $2022 / 08 / 08$ $2022 / 08 / 09$ Svitlana Shaula Phenols (4AAP) TECH/PHEN 8153271 $2022 / 08 / 08$ $2022 / 08 / 10$ Kien Tran Total Kjeldahl Nitrogen in Water SKAL 8158331 N/A $2022 / 08 / 10$ Mandeep Kaur Total PAHs CALC 8155157 $2022 / 08 / 09$ $2022 / 08 / 10$ Rajni Tyagi Mineral/Synthetic O \& G (TPH Heavy Oil) BAL 8147802 N/A $2022 / 08 / 07$ Automated Statchk Total Suspended Solids BAL 8157600 $2022 / 08 / 10$ $2022 / 08 / 10$ Maulik Jashubhai Patel Volatile Organic Compounds in Water GC/MS 8151625 $2022 / 08 / 09$ $2022 / 08 / 10$ Shaneil Hall 8151007 N/A $2022 / 08 / 08$ Dina Wang

Page 7 of 15
exp Services Inc

Client Project \#: BRM-21021990-A0
Site Location: 13 JOHN ST, TORONTO, ON
Your P.O. \#: ENV-BRM
Sampler Initials: YR

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	$25.7^{\circ} \mathrm{C}$

Sample TJA920 [BH 203] : VOC Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Results relate only to the items tested.

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	\% Recovery	QC Limits	\% Recovery	QC Limits	Value	UNITS	Value (\%)	QC Limits	\% Recovery	QC Limits
8149948	2,4,6-Tribromophenol	2022/08/05	83	10-130	81	10-130	76	\%				
8149948	2-Fluorobiphenyl	2022/08/05	77	30-130	68	30-130	71	\%				
8149948	D14-Terphenyl (FS)	2022/08/05	89	30-130	84	30-130	97	\%				
8149948	D5-Nitrobenzene	2022/08/05	81	30-130	81	30-130	82	\%				
8149948	D8-Acenaphthylene	2022/08/05	77	30-130	72	30-130	75	\%				
8151007	4-Bromofluorobenzene	2022/08/08	101	70-130	103	70-130	96	\%				
8151007	D4-1,2-Dichloroethane	2022/08/08	111	70-130	111	70-130	117	\%				
8151007	D8-Toluene	2022/08/08	104	70-130	104	70-130	90	\%				
8153748	Decachlorobiphenyl	2022/08/09	105	60-130	75	60-130	84	\%				
8149059	Total BOD	2022/08/10					ND,RDL=2	mg / L	NC	30	88	80-120
8149948	1,3-Dinitropyrene	2022/08/06	115	30-130	121	30-130	ND, RDL=0.4	ug/L	NC	40		
8149948	1,6-Dinitropyrene	2022/08/06	109	30-130	113	30-130	ND, RDL=0.4	ug/L	NC	40		
8149948	1,8-Dinitropyrene	2022/08/06	100	30-130	97	30-130	ND, RDL=0.4	ug/L	NC	40		
8149948	3,3'-Dichlorobenzidine	2022/08/06	89	30-130	90	30-130	ND, RDL=0.8	ug/L	NC	40		
8149948	7H-Dibenzo(c,g) Carbazole	2022/08/06	106	30-130	108	30-130	ND, RDL=0.4	ug/L	NC	40		
8149948	Anthracene	2022/08/06	84	30-130	86	30-130	ND, RDL=0.2	ug/L	NC	40		
8149948	Benzo(a)anthracene	2022/08/06	89	30-130	89	30-130	ND, RDL=0.2	ug/L	NC	40		
8149948	Benzo(a)pyrene	2022/08/06	88	30-130	92	30-130	ND, RDL=0.2	ug/L	NC	40		
8149948	Benzo(b/j)fluoranthene	2022/08/06	90	30-130	94	30-130	ND, RDL=0.2	ug/L	NC	40		
8149948	Benzo(e)pyrene	2022/08/06	88	30-130	92	30-130	ND, RDL=0.2	ug/L	NC	40		
8149948	Benzo(g, h, i)perylene	2022/08/06	79	30-130	84	30-130	ND, RDL=0.2	ug/L	NC	40		
8149948	Benzo(k)fluoranthene	2022/08/06	93	30-130	94	30-130	ND, RDL=0.2	ug/L	NC	40		
8149948	Bis(2-ethylhexyl)phthalate	2022/08/06	78	30-130	78	30-130	ND,RDL=2	ug/L	NC	40		
8149948	Chrysene	2022/08/06	89	30-130	89	30-130	ND, RDL=0.2	ug/L	NC	40		
8149948	Dibenzo(a,h)anthracene	2022/08/06	79	30-130	83	30-130	ND, RDL=0.2	ug/L	NC	40		
8149948	Dibenzo(a,i)pyrene	2022/08/06	65	30-130	65	30-130	ND, RDL=0.2	ug/L	NC	40		
8149948	Dibenzo(a,j) acridine	2022/08/06	102	30-130	114	30-130	ND, RDL=0.4	ug/L	NC	40		
8149948	Di-N-butyl phthalate	2022/08/06	88	30-130	92	30-130	ND,RDL=2	ug/L	NC	40		
8149948	Fluoranthene	2022/08/06	91	30-130	93	30-130	ND, RDL=0.2	ug/L	NC	40		
8149948	Indeno(1,2,3-cd)pyrene	2022/08/06	80	30-130	87	30-130	ND, RDL=0.2	ug/L	NC	40		

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	\% Recovery	QC Limits	\% Recovery	QC Limits	Value	UNITS	Value (\%)	QC Limits	\% Recovery	QC Limits
8149948	Pentachlorophenol	2022/08/06	49	30-130	63	30-130	ND,RDL=1	ug/L	NC	40		
8149948	Perylene	2022/08/06	86	30-130	86	30-130	ND, RDL=0.2	ug/L	NC	40		
8149948	Phenanthrene	2022/08/06	84	30-130	85	30-130	ND, RDL=0.2	ug/L	NC	40		
8149948	Pyrene	2022/08/06	92	30-130	93	30-130	ND, RDL=0.2	ug/L	NC	40		
8151007	1,1,2,2-Tetrachloroethane	2022/08/08	106	70-130	106	70-130	ND, RDL=0.40	ug/L	NC	30		
8151007	1,2-Dichlorobenzene	2022/08/08	96	70-130	95	70-130	ND, RDL=0.40	ug/L	NC	30		
8151007	1,4-Dichlorobenzene	2022/08/08	107	70-130	105	70-130	ND, RDL=0.40	ug/L	NC	30		
8151007	Benzene	2022/08/08	98	70-130	98	70-130	ND, RDL=0.20	ug/L	NC	30		
8151007	Chloroform	2022/08/08	104	70-130	104	70-130	ND, RDL=0.20	ug/L	NC	30		
8151007	cis-1,2-Dichloroethylene	2022/08/08	109	70-130	107	70-130	ND, RDL=0.50	ug/L	1.4	30		
8151007	Ethylbenzene	2022/08/08	87	70-130	88	70-130	ND, RDL=0.20	ug/L	NC	30		
8151007	Methylene Chloride(Dichloromethane)	2022/08/08	108	70-130	108	70-130	ND, RDL=2.0	ug/L	NC	30		
8151007	o-Xylene	2022/08/08	87	70-130	92	70-130	ND, RDL=0.20	ug/L	NC	30		
8151007	p+m-Xylene	2022/08/08	93	70-130	95	70-130	ND, RDL=0.20	ug/L	NC	30		
8151007	Tetrachloroethylene	2022/08/08	NC	70-130	91	70-130	ND, RDL=0.20	ug/L	0.76	30		
8151007	Toluene	2022/08/08	97	70-130	98	70-130	ND, RDL=0.20	ug/L	NC	30		
8151007	Total Xylenes	2022/08/08					ND, RDL=0.20	ug/L	NC	30		
8151007	trans-1,3-Dichloropropene	2022/08/08	100	70-130	108	70-130	ND, RDL=0.40	ug/L	NC	30		
8151007	Trichloroethylene	2022/08/08	105	70-130	105	70-130	ND, RDL=0.20	ug/L	1.3	30		
8151625	Total Suspended Solids	2022/08/10					ND, RDL=10	mg / L	0.36	25	98	85-115
8152961	Mercury (Hg)	2022/08/08	96	75-125	96	80-120	$\begin{array}{c\|} \hline N D, \\ \text { RDL=0.00010 } \end{array}$	mg/L	NC	20		
8153191	Total Cyanide (CN)	2022/08/08	97	80-120	99	80-120	$\begin{gathered} \text { ND, } \\ \text { RDL=0.0050 } \end{gathered}$	mg/L	NC	20		
8153263	Fluoride (F-)	2022/08/10	106	80-120	106	80-120	ND, RDL=0.10	mg / L	6.6	20		
8153271	pH	2022/08/10			102	98-103			0.66	N/A		
8153748	Total PCB	2022/08/09	103	60-130	84	60-130	ND, RDL=0.05	ug/L	NC	40		
8153846	Nonylphenol Ethoxylate (Total)	2022/08/09	83	50-130	98	50-130	$\begin{gathered} \hline \text { ND, } \\ \text { RDL=0.005 } \end{gathered}$	mg/L	NC	40		
8154965	Total Aluminum (AI)	2022/08/09	103	80-120	101	80-120	ND, RDL=4.9	ug/L	6.4	20		

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc
Client Project \#: BRM-21021990-AO
Client Project \#: BRM-21021990-AO
Site Location: 13 JOHN ST, TORONTO, ON Your P.O. \#: ENV-BRM Sampler Initials: YR

QUALITY ASSURANCE REPORT(CONT'D)

 Your P.O. \#: ENV-BRM Sampler Initials: YR| | | | Matrix Spike | | SPIKED BLANK | | Method Blank | | RPD | | QC Standard | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| QC Batch | Parameter | Date | \% Recovery | QC Limits | \% Recovery | QC Limits | Value | UNITS | Value (\%) | QC Limits | \% Recovery | QC Limits |
| 8154965 | Total Antimony (Sb) | 2022/08/09 | 104 | 80-120 | 104 | 80-120 | ND, RDL=0.50 | ug/L | NC | 20 | | |
| 8154965 | Total Arsenic (As) | 2022/08/09 | 99 | 80-120 | 99 | 80-120 | ND, RDL=1.0 | ug/L | 4.3 | 20 | | |
| 8154965 | Total Cadmium (Cd) | 2022/08/09 | 99 | 80-120 | 99 | 80-120 | $\begin{gathered} \hline \text { ND, } \\ \text { RDL=0.090 } \end{gathered}$ | ug/L | NC | 20 | | |
| 8154965 | Total Chromium (Cr) | 2022/08/09 | 97 | 80-120 | 95 | 80-120 | ND, RDL=5.0 | ug/L | NC | 20 | | |
| 8154965 | Total Cobalt (Co) | 2022/08/09 | 96 | 80-120 | 97 | 80-120 | ND, RDL=0.50 | ug/L | NC | 20 | | |
| 8154965 | Total Copper (Cu) | 2022/08/09 | 97 | 80-120 | 98 | 80-120 | ND, RDL=0.90 | ug/L | 6.3 | 20 | | |
| 8154965 | Total Lead (Pb) | 2022/08/09 | 96 | 80-120 | 96 | 80-120 | ND, RDL=0.50 | ug/L | 3.7 | 20 | | |
| 8154965 | Total Manganese (Mn) | 2022/08/09 | 96 | 80-120 | 98 | 80-120 | ND, RDL=2.0 | ug/L | 5.3 | 20 | | |
| 8154965 | Total Molybdenum (Mo) | 2022/08/09 | 97 | 80-120 | 95 | 80-120 | ND, RDL=0.50 | ug/L | 1.5 | 20 | | |
| 8154965 | Total Nickel (Ni) | 2022/08/09 | 99 | 80-120 | 97 | 80-120 | ND, RDL=1.0 | ug/L | NC | 20 | | |
| 8154965 | Total Phosphorus (P) | 2022/08/09 | 103 | 80-120 | 96 | 80-120 | ND, RDL=100 | ug/L | NC | 20 | | |
| 8154965 | Total Selenium (Se) | 2022/08/09 | 102 | 80-120 | 104 | 80-120 | ND, RDL=2.0 | ug/L | NC | 20 | | |
| 8154965 | Total Silver (Ag) | 2022/08/09 | 93 | 80-120 | 94 | 80-120 | $\begin{gathered} \mathrm{ND}, \\ \mathrm{RDL}=0.090 \\ \hline \end{gathered}$ | ug/L | NC | 20 | | |
| 8154965 | Total Tin (Sn) | 2022/08/09 | 103 | 80-120 | 101 | 80-120 | ND, RDL=1.0 | ug/L | NC | 20 | | |
| 8154965 | Total Titanium (Ti) | 2022/08/09 | 95 | 80-120 | 98 | 80-120 | ND, RDL=5.0 | ug/L | NC | 20 | | |
| 8154965 | Total Zinc (Zn) | 2022/08/09 | 98 | 80-120 | 99 | 80-120 | ND, RDL=5.0 | ug/L | NC | 20 | | |
| 8155157 | Total Kjeldahl Nitrogen (TKN) | 2022/08/10 | 109 | 80-120 | 100 | 80-120 | ND, RDL=0.10 | mg / L | 0 | 20 | 102 | 80-120 |
| 8155880 | Chromium (VI) | 2022/08/09 | 101 | 80-120 | 100 | 80-120 | ND, RDL=0.50 | ug / L | NC | 20 | | |
| 8157596 | Total Oil \& Grease | 2022/08/10 | | | 99 | 85-115 | ND, RDL=0.50 | mg / L | 0.25 | 25 | | |
| 8157600 | Total Oil \& Grease Mineral/Synthetic | 2022/08/10 | | | 96 | 85-115 | ND, RDL=0.50 | mg / L | 0.52 | 25 | | |
| 8158331 | Phenols-4AAP | 2022/08/10 | 100 | 80-120 | 99 | 80-120 | $\begin{gathered} \text { ND, } \\ \text { RDL=0.0010 } \end{gathered}$ | mg/L | 12 | 20 | | |

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Cuisting Carmive

Cristina Carriere, Senior Scientific Specialist

Sonja Elavinamannil, Master of Biochemistry, Team Lead

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025 , signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Exceedance Summary Table - Toronto Storm Sewer

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
BH 203	TJA920-09	Total Manganese (Mn)	50	52	2.0	ug / L
BH 203	TJA920-06	Total Suspended Solids	15	29	10	mg / L

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.						

CLIENT NAME: EXP SERVICES INC 1595 CLARK BLVD. BRAMPTON, ON L6T4V1 (905) 793-9809
ATTENTION TO: Jay Samarakkody
PROJECT: BRM-21021990-A0
AGAT WORK ORDER: 21 T837512
MICROBIOLOGY ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer
TRACE ORGANICS REVIEWED BY: Inga Kuzmina, Trace Organics Lab Manager
ULTRA TRACE REVIEWED BY: Emmanuelle St-Pierre, chimiste WATER ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer
DATE REPORTED: Dec 14, 2021
PAGES (INCLUDING COVER): 17
VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100
${ }^{*}$ Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

fGFT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)
Western Enviro-Agricultural Laboratory Association (WEALA)
Environmental Services Association of Alberta (ESAA)
5835 COOPERS AVENUE
MISSIISAUGA, ONTARIO
CANADA L4Z 1 Y2
TEL (905$) 712-5100$
FAX $9055772-5122$
http://www.agatlabs.com

Toronto Sanitary and Combined Sewer Use By-law - Organic						
DATE RECEIVED: 2021-11-30						DATE REPORTED: 2021-12-14
Parameter	Unit	G / S: A	SAMPLE G / S: B	CRIPTION: PLE TYPE: SAMPLED: RDL	BH7 Water $2021-11-30$ $12: 00$ 3272934	
Oil and Grease (animal/vegetable) in water	mg / L	150		0.5	<0.5	
Oil and Grease (mineral) in water	mg / L	15		0.5	<0.5	
Methylene Chloride	mg / L	2	0.0052	0.0003	<0.0003	
trans-1,3-Dichloropropylene	mg / L	0.14	0.0056	0.0003	<0.0003	
cis-1,2-Dichloroethylene	mg / L	4	0.0056	0.0002	<0.0002	
Chloroform	mg / L	0.04	0.002	0.0002	<0.0002	
Benzene	mg / L	0.01	0.002	0.0002	<0.0002	
Tetrachloroethylene	mg / L	1	0.0044	0.0001	<0.0001	
Toluene	mg / L	0.016	0.002	0.0002	<0.0002	
Trichloroethlyene	mg / L	0.4	0.0076	0.0002	<0.0002	
Ethylbenzene	mg / L	0.16	0.002	0.0001	<0.0001	
1,1,2,2-Tetrachloroethane	mg / L	1.4	0.017	0.0001	<0.0001	
1,2-Dichlorobenzene	mg / L	0.05	0.0056	0.0001	<0.0001	
1,4-Dichlorobenzene	mg / L	0.08	0.0068	0.0001	<0.0001	
m \& p-Xylene	mg / L			0.0002	0.0003	
o-Xylene	mg / L			0.0001	<0.0001	
Xylenes (Total)	mg / L	1.4	0.0044	0.0002	$0.0003[<B]$	
PCBs	mg / L	0.001	0.0004	0.0002	<0.0002	
Pentachlorophenol	mg / L	0.005	0.002	0.0001	<0.0001	
Di-n-butyl phthalate	mg / L	0.08	0.015	0.0005	<0.0005	
3,3'-Dichlorobenzidine	mg / L	0.002	0.0008	0.0005	<0.0005	
Bis(2-Ethylhexyl)phthalate	mg / L	0.012	0.0088	0.0005	<0.0005	
Total PAHs	mg / L	0.005	0.002	0.00030	<0.00030	

Certificate of Analysis PROJECT: BRM-21021990-A0 ATTENTION TO: Jay Samarakkody SAMPLED BY:M.L
(4)
CLIENT NAME: EXP SERVICES INC SAMPLING SITE:John St. and Station St.

DATE RECEIVED: 2021-11-30

Parameter
Oil and Grease (animal/vegetable) Chloroform
etrachlo
-Xylene
Xylenes (Total)
๗
Pentachlorophenol
3,3'-Dichlorobenzidine
Total PAHs

Toronto Sanitary and Combined Sewer Use By-law - Organic				
DATE RECEIVED: 2021-11-30				DATE REPORTED: 2021-12-14
Surrogate	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: Acceptable Limits	BH7 Water $2021-11-30$ $12: 00$ 3272934	
Toluene-d8	\% Recovery	50-140	77	
4-Bromofluorobenzene	\% Recovery	50-140	89	
Decachlorobiphenyl	\%	50-140	104	
2,4,6-Tribromophenol	\%	50-140	105	
2-Fluorophenol	\%	50-140	98	
Chrysene-d12	\%	50-140	88	
phenol-d6 surrogate	\%	50-140	90	

 Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.
Oil and Grease animal/vegetable is a calculated parameter. The calculated value is the difference between Total O\&G and Mineral O\&G.
Total PAHs is calculated as sum of Anthracene, Benzo(a)pyrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(g,h,i)perylene, Chrysene, Dibenz(a,h)anthracene, Fluc Total PAHs is calculated as sum of Anthracene, Benzo(a)pyren
Indeno(1,2,3-cd)pyrene, Perylene, Phenanthrene and Pyrene. Indeno(1,2,3-cd)pyrene, Perylene, Phenanthrene and Pyrene.
Analysis performed at AGAT Toronto (unless marked by *)
Certificate of Analysis (8iii) (নGGTV Laboratories

CLIENT NAME: EXP SERVICES INC
SAMPLING SITE:John St. and Station St.

DATE RECEIVED: 2021-11-30

PROJECT: BRM-21021990-A0

SAMPLED BY:M.L
Toronto Sanitary and Combined Sewer Use By-law - Organic
SAMPLE DESCRIPTION: BH7
DATE SAMPLED:
ptable Limits
$50-140$
$50-140$
50-140

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CENADA L4Z 1 Y2
TEL (905)712-5100
FAX (905)712-5122
http://www.agatlabs.com

Nonylphenol and Nonylphenol Ethoxylates (Ontario, mg/L)						
DATE RECEIVED: 2021-11-30						DATE REPORTED: 2021-12-14
Parameter	Unit	G / S: A	$\begin{array}{r} \hline \text { SAMPLE } \\ \text { DA } \\ \text { G/S: } \end{array}$	RIPTION: LE TYPE: AMPLED: RDL	BH7 Water 2021-11-30 12:00 3272934	
Total Nonylphenol	mg/L	0.001	0.02	0.001	<0.001	
NP1EO	mg / L			0.001	<0.001	
NP2EO	mg / L			0.0003	<0.0003	
Total Nonylphenol Ethoxylates	mg / L	0.01	0.2	0.001	<0.001	

 Analysis performed at AGAT Montréal (unless marked by *)
5835 COOPERS AVENUE
MISSIISAUGA, ONTARIO
CANADA L4Z 1 Y2
TEL (905$) 712-5100$
FAX $9055772-5122$
http://www.agatlabs.com
SAMPLED BY:M.L.

Certificate of Analysis
AGAT WORK ORDER: 21T837512
PROJECT: BRM-21021990-A0
9) FGGT Laboraties

CLIENT NAME: EXP SERVICES INC
SAMPLING SITE:John St. and Station St.
BOD5
SAMPLE DESCRIPTION: BH7
SAMPLETYPE:
DATE SAMPLED:
$2021-11-30$
12:00
3272934
<2.00
,

RDL
2.00

Parameter	Unit	G/S:A	G/S: B
Biochemical Oxygen Demand, Total	mg / L	15	300

DATE RECEIVED: 2021-11-30

Comments: RDL - Reported Detection Limi
Guideline values are for general refere
Analysis performed at AGAT Halifax (unless marked by *)

Quality Assurance

CLIENT NAME: EXP SERVICES INC PROJECT: BRM-21021990-A0

AGAT WORK ORDER: 21T837512 ATTENTION TO: Jay Samarakkody
SAMPLING SITE:John St. and Station St.
SAMPLED BY:M.L.

Microbiology Analysis															
RPT Date: Dec 14, 2021			DUPLICATE			Method Blank	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample Id	Dup \#1	Dup \#2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
								Lower	Upper		Lower	Upper		Lower	Upper
E. Coli (Using MI Agar)															
Escherichia coli	3272917		0	0	NA										

Comments: NA - \% RPD Not Applicable.

Certified By:

Quality Assurance

CLIENT NAME: EXP SERVICES INC
PROJECT: BRM-21021990-A0
PROJECT: BRM-21021990-A0
SAMPLING SITE:John St. and Station St.

AGAT WORK ORDER: 21 T837512 ATTENTION TO: Jay Samarakkody

 SAMPLED BY:M.L.
Trace Organics Analysis

RPT Date: Dec 14, 2021			DUPLICATE			Method Blank	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	$\underset{\text { Id }}{\text { Sample }}$	Dup \#1	Dup \#2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
								Lower	Upper		Lower	Upper		Lower	Upper
Toronto Sanitary and Combined Sewer Use By-law - Organic															
Oil and Grease (animal/vegetable) in water	3277280		<0.5	<0.5	NA	<0.5	100\%	70\%	130\%	103\%	70\%	130\%	108\%	70\%	130\%
Oil and Grease (mineral) in water	3277280		<0.5	<0.5	NA	<0.5	84\%	70\%	130\%	85\%	70\%	130\%	83\%	70\%	130\%
Methylene Chloride	3268783		<0.0003	<0.0003	NA	< 0.0003	120\%	50\%	140\%	114\%	60\%	130\%	118\%	50\%	140\%
trans-1,3-Dichloropropylene	3268783		<0.0003	<0.0003	NA	< 0.0003	93\%	50\%	140\%	108\%	60\%	130\%	88\%	50\%	140\%
cis-1,2-Dichloroethylene	3268783		<0.0002	<0.0002	NA	< 0.0002	95\%	50\%	140\%	105\%	60\%	130\%	112\%	50\%	140\%
Chloroform	3268783		<0.0002	<0.0002	NA	<0.0002	83\%	50\%	140\%	81\%	60\%	130\%	110\%	50\%	140\%
Benzene	3268783		<0.0002	<0.0002	NA	< 0.0002	81\%	50\%	140\%	76\%	60\%	130\%	101\%	50\%	140\%
Tetrachloroethylene	3268783		<0.0001	<0.0001	NA	< 0.0001	104\%	50\%	140\%	109\%	60\%	130\%	88\%	50\%	140\%
Toluene	3268783		<0.0002	<0.0002	NA	< 0.0002	105\%	50\%	140\%	80\%	60\%	130\%	81\%	50\%	140\%
Trichloroethlyene	3268783		<0.0002	<0.0002	NA	< 0.0002	119\%	50\%	140\%	105\%	60\%	130\%	91\%	50\%	140\%
Ethylbenzene	3268783		<0.0001	<0.0001	NA	< 0.0001	92\%	50\%	140\%	86\%	60\%	130\%	113\%	50\%	140\%
1,1,2,2-Tetrachloroethane	3268783		<0.0001	<0.0001	NA	< 0.0001	112\%	50\%	140\%	119\%	60\%	130\%	108\%	50\%	140\%
1,2-Dichlorobenzene	3268783		<0.0001	<0.0001	NA	< 0.0001	118\%	50\%	140\%	96\%	60\%	130\%	104\%	50\%	140\%
1,4-Dichlorobenzene	3268783		<0.0001	<0.0001	NA	< 0.0001	106\%	50\%	140\%	101\%	60\%	130\%	83\%	50\%	140\%
m \& p-Xylene	3268783		<0.0002	<0.0002	NA	< 0.0002	106\%	50\%	140\%	102\%	60\%	130\%	109\%	50\%	140\%
o-Xylene	3268783		<0.0001	<0.0001	NA	< 0.0001	105\%	50\%	140\%	108\%	60\%	130\%	100\%	50\%	140\%
PCBs	3278382		< 0.0002	< 0.0002	NA	< 0.0002	95\%	50\%	140\%	92\%	50\%	140\%	85\%	50\%	140\%
Pentachlorophenol	3222492		< 0.0005	< 0.0005	NA	< 0.0001	95\%	50\%	140\%	73\%	50\%	140\%	93\%	50\%	140\%
Di-n-butyl phthalate	3222492		< 0.0005	< 0.0005	NA	< 0.0005	78\%	50\%	140\%	75\%	50\%	140\%	105\%	50\%	140\%
3,3'-Dichlorobenzidine	3222492		< 0.0005	< 0.0005	NA	< 0.0005	96\%	30\%	130\%	96\%	30\%	130\%	86\%	30\%	130\%
Bis(2-Ethylhexyl)phthalate	3222492		< 0.0005	<0.0005	NA	< 0.0005	105\%	50\%	140\%	90\%	50\%	140\%	98\%	50\%	140\%

Comments: When the average of the sample and duplicate results is less than $5 x$ the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

य ज a

Quality Assurance

CLIENT NAME: EXP SERVICES INC PROJECT: BRM-21021990-A0

AGAT WORK ORDER: 21T837512 ATTENTION TO: Jay Samarakkody
SAMPLING SITE:John St. and Station St.
SAMPLED BY:M.L.

Ultra Trace Analysis

RPT Date: Dec 14, 2021			DUPLICATE			Method Blank	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample Id	Dup \#1	Dup \#2	RPD		Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
								Lower	Upper		Lower	Upper		Lower	Upper
Nonylphenol and Nonylphenol Ethoxylates (Ontario, mg/L)															
Total Nonylphenol	1	3281779	< 0.001	< 0.001	NA	< 0.001	NA	60\%	140\%	91\%	60\%	140\%	NA	60\%	140\%
NP1EO	1	3281779	< 0.001	<0.001	NA	< 0.001	NA	60\%	140\%	75\%	60\%	140\%	NA	60\%	140\%
NP2EO	1	3281779	< 0.0003	< 0.0003	NA	< 0.0003	NA	60\%	140\%	67\%	60\%	140\%	NA	60\%	140\%

Certified By:

Quality Assurance

CLIENT NAME: EXP SERVICES INC
PROJECT: BRM-21021990-A0
SAMPLING SITE:John St. and Station St.
AGAT WORK ORDER: 21T837512 ATTENTION TO: Jay Samarakkody SAMPLED BY:M.L.

				Wat	Al	alysi	IS								
RPT Date: Dec 14, 2021				UPLICAT			REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MATR	RIX SPI	
PARAMETER	Batch	Sample	Dup \#1	Dup \#2	RPD	Method Blank	Measured	Acce Lim	ptable mits	Recovery	Acce Li	ptable mits	Recovery	Acce Li	ptable nits
								Lower	Upper		Lower	Upper		Lower	Upper
Toronto Sanitary	we	-law - I	an												
pH	3271799		7.65	7.71	0.8\%	NA	101\%	90\%	110\%						
Fluoride	3274669		<0.05	<0.05	NA	<0.05	102\%	70\%	130\%	104\%	80\%	120\%	114\%	70\%	130\%
Total Kjeldahl Nitrogen	3272934	72934	1.65	1.79	8.1\%	<0.10	100\%	70\%	130\%	100\%	80\%	120\%	104\%	70\%	130\%
Total Phosphorus	3272934	272934	0.04	0.05	NA	<0.02	102\%	70\%	130\%	98\%	80\%	120\%	102\%	70\%	130\%
Total Cyanide	3252346		<0.002	<0.002	NA	< 0.002	109\%	70\%	130\%	106\%	80\%	120\%	104\%	70\%	130\%
Phenols	3257568		<0.001	0.004	NA	<0.001	106\%	90\%	110\%	97\%	90\%	110\%	NA	80\%	120\%
Total Suspended Solids	3275835		<10	<10	NA	<10	98\%	80\%	120\%						
Total Aluminum	3269822		0.022	0.015	NA	<0.010	96\%	70\%	130\%	102\%	80\%	120\%	101\%	70\%	130\%
Total Antimony	3269822		<0.020	<0.020	NA	< 0.020	103\%	70\%	130\%	99\%	80\%	120\%	104\%	70\%	130\%
Total Arsenic	3269822		<0.015	<0.015	NA	< 0.015	98\%	70\%	130\%	106\%	80\%	120\%	106\%	70\%	130\%
Total Cadmium	3269822		<0.005	<0.005	NA	<0.005	101\%	70\%	130\%	101\%	80\%	120\%	106\%	70\%	130\%
Total Chromium	3269822		<0.020	<0.020	NA	< 0.020	101\%	70\%	130\%	102\%	80\%	120\%	99\%	70\%	130\%
Chromium VI	3291576		<0.002	<0.002	NA	< 0.002	102\%	70\%	130\%	103\%	80\%	120\%	111\%	70\%	130\%
Total Cobalt	3269822		<0.010	<0.010	NA	< 0.010	104\%	70\%	130\%	102\%	80\%	120\%	100\%	70\%	130\%
Total Copper	3269822		0.031	0.036	NA	< 0.020	103\%	70\%	130\%	100\%	80\%	120\%	105\%	70\%	130\%
Total Lead	3269822		<0.020	<0.020	NA	<0.020	99\%	70\%	130\%	100\%	80\%	120\%	102\%	70\%	130\%
Total Manganese	3269822		<0.020	<0.020	NA	< 0.020	104\%	70\%	130\%	100\%	80\%	120\%	104\%	70\%	130\%
Total Mercury	3274658		<0.0002	<0.0002	NA	< 0.0002	102\%	70\%	130\%	99\%	80\%	120\%	100\%	70\%	130\%
Total Molybdenum	3269822		<0.020	<0.020	NA	< 0.020	107\%	70\%	130\%	104\%	80\%	120\%	110\%	70\%	130\%
Total Nickel	3269822		<0.030	<0.030	NA	< 0.030	104\%	70\%	130\%	103\%	80\%	120\%	102\%	70\%	130\%
Total Selenium	3269822		<0.002	<0.002	NA	< 0.002	99\%	70\%	130\%	106\%	80\%	120\%	108\%	70\%	130\%
Total Silver	3269822		<0.020	<0.020	NA	< 0.020	101\%	70\%	130\%	103\%	80\%	120\%	104\%	70\%	130\%
Total Tin	3269822		<0.020	<0.020	NA	< 0.020	103\%	70\%	130\%	100\%	80\%	120\%	104\%	70\%	130\%
Total Titanium	3269822		<0.010	<0.010	NA	<0.010	101\%	70\%	130\%	90\%	80\%	120\%	93\%	70\%	130\%
Total Zinc	3269822		<0.020	<0.020	NA	< 0.020	105\%	70\%	130\%	107\%	80\%	120\%	115\%	70\%	130\%

Comments: NA signifies Not Applicable.
Duplicate NA: results are under 5X the RDL and will not be calculated.
Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated.

BOD5
Biochemical Oxygen Demand, Total 3269718
$91.0 \quad 94.0 \quad 3.2 \% \quad<2 \quad 89 \% \quad 70 \% \quad 130 \%$

Certified By:
FGGET QUALITY ASSURANCE REPORT (V1)
Page 12 of 17
AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: EXP SERVICES INC PROJECT: BRM-21021990-A0

SAMPLING SITE:John St. and Station St.

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Microbiology Analysis Escherichia coli	MIC-93-7010	EPA 1604	Membrane Filtration

Method Summary

CLIENT NAME: EXP SERVICES INC
 PROJECT: BRM-21021990-A0

SAMPLING SITE:John St. and Station St.

AGAT WORK ORDER: 21 T837512 ATTENTION TO: Jay Samarakkody SAMPLED BY:M.L.

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Oil and Grease (animal/vegetable) in water	VOL-91-5011	EPA SW-846 1664A \& SM 5520	BALANCE
Oil and Grease (mineral) in water	VOL-91-5011	EPA SW-846 1664A \& SM 5520	BALANCE
Methylene Chloride	VOL-91-5001	modified from EPA 5030B \& EPA 8260D	(P\&T)GC/MS
trans-1,3-Dichloropropylene	VOL-91-5001	modified from EPA 5030B \& EPA 8260D	(P\&T)GC/MS
cis-1,2-Dichloroethylene	VOL-91-5001	modified from EPA SW-846 5230B \& 8260D	(P\&T)GC/MS
Chloroform	VOL-91-5001	modified from EPA 5030B \& EPA 8260D	(P\&T)GC/MS
Benzene	VOL-91-5001	modified from EPA 5030B \& EPA 8260D	(P\&T)GC/MS
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B \& EPA 8260D	(P\&T)GC/MS
Toluene	VOL-91-5001	modified from EPA 5030B \& EPA 8260D	(P\&T)GC/MS
Trichloroethlyene	VOL-91-5001	modified from EPA 5030B \& EPA 8260D	(P\&T)GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA 5030B \& EPA 8260D	(P\&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B \& EPA 8260D	(P\&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B \& EPA 8260D	(P\&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B \& EPA 8260D	(P\&T)GC/MS
m \& p-Xylene	VOL-91-5001	modified from EPA 5030B \& EPA 8260D	(P\&T)GC/MS
o-Xylene	VOL-91-5001	modified from EPA 5030B \& EPA 8260D	(P\&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B \& EPA 8260D	CALCULATION
Toluene-d8	VOL-91-5001	modified from EPA 5030B \& EPA 8260D	(P\&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B \& EPA 8260D	(P\&T)GC/MS
PCBs	ORG-91-5112	modified from EPA SW-846 3510C \& 8082A	GC/ECD
Decachlorobiphenyl	ORG-91-5112	modified from EPA SW846 3510C \& 8082A	GC/ECD
Pentachlorophenol	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS
Di-n-butyl phthalate	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS
3,3'-Dichlorobenzidine	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS
Bis(2-Ethylhexyl)phthalate	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS
Total PAHs	ORG-91-5114	modified from EPA 3510C and EPA 8270E	CALCULATION
2,4,6-Tribromophenol	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS
2-Fluorophenol	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS

Method Summary

CLIENT NAME: EXP SERVICES INC PROJECT: BRM-21021990-A0

SAMPLING SITE:John St. and Station St.
AGAT WORK ORDER: 21T837512 ATTENTION TO: Jay Samarakkody SAMPLED BY:M.L.

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Chrysene-d12	ORG-91-5114	modified from EPA 3510C and EPA	GC/MS
phenol-d6 surrogate	8270E	modified from EPA 3510C and EPA	GC/MS
Ultra Trace Analysis	ORG-91-5114	8270 E	
Total Nonylphenol			LCMSMS
NP1EO	TOX-151-19003F	ASTM D7065-6	LCMSMS
NP2EO	TOX-151-19003F	ASTM D7065-6	LCMSMS
Total Nonylphenol Ethoxylates	TOX-151-19003F	ASTM D7065-6	LCMSMS

Method Summary

CLIENT NAME: EXP SERVICES INC
 PROJECT: BRM-21021990-A0

SAMPLING SITE:John St. and Station St.
AGAT WORK ORDER: 21 T837512 ATTENTION TO: Jay Samarakkody SAMPLED BY:M.L.

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Biochemical Oxygen Demand, Total	INOR-121-6023	SM 5210 B	INCUBATOR
pH	INOR-93-6000	modified from SM 4500-H+B	PC TITRATE
Fluoride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Total Kjeldahl Nitrogen	INOR-93-6048	modified from EPA 351.2 and SM 4500-NORG D	LACHAT FIA
Total Phosphorus	INOR-93-6022	modified from SM 4500-P B and SM 4500-P E	SPECTROPHOTOMETER
Total Cyanide	INOR-93-6051	modified from MOECC E3015; SM $4500-C N-A, B, \& C$	TECHNICON AUTO ANALYZER
Phenols	INOR-93-6072	modified from SM 5530 D	LACHAT FIA
Total Suspended Solids	INOR-93-6028	modified from EPA 1684,ON MOECC E3139,SM 2540C,D	BALANCE
Total Aluminum	MET-93-6103	modified from EPA 200.8, 3005A, 3010A \& 6020B	ICP-MS
Total Antimony	MET-93-6103	modified from EPA 200.8, 3005A, 3010A \& 6020B	ICP-MS
Total Arsenic	MET-93-6103	modified from EPA 200.8, 3005A, 3010A \& 6020B	ICP-MS
Total Cadmium	MET -93-6103	modified from EPA 200.8, 3005A, 3010A \& 6020B	ICP-MS
Total Chromium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A \& 6020B	ICP-MS
Chromium VI	INOR-93-6073	modified from SM 3500-CR B	LACHAT FIA
Total Cobalt	MET-93-6103	modified from EPA 200.8, 3005A, 3010A \& 6020B	ICP-MS
Total Copper	MET-93-6103	modified from EPA 200.8, 3005A, 3010A \& 6020B	ICP-MS
Total Lead	MET-93-6103	modified from EPA 200.8, 3005A, 3010A \& 6020B	ICP-MS
Total Manganese	MET-93-6103	modified from EPA 200.8, 3005A, 3010A \& 6020B	ICP-MS
Total Mercury	MET-93-6100	modified from EPA 245.2 and SM 3112 B	CVAAS
Total Molybdenum	MET-93-6103	modified from EPA 200.8, 3005A, 3010A \& 6020B	ICP-MS
Total Nickel	MET-93-6103	modified from EPA 200.8, 3005A, 3010A \& 6020B	ICP-MS
Total Selenium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A \& 6020B	ICP-MS
Total Silver	MET-93-6103	modified from EPA 200.8, 3005A, 3010A \& 6020B	ICP-MS
Total Tin	MET-93-6103	modified from EPA 200.8, 3005A, 3010A \& 6020B	ICP-MS
Total Titanium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A \& 6020B	ICP-MS
Total Zinc	MET-93-6103	modified from EPA 200.8, 3005A, 3010A \& 6020B	ICP-MS

EXP Services Inc 13, 15, 17, 19, \& 21 John Street and 36, 38, \& 40 South Station Street, Toronto, Ontario Hydrogeological Investigation BRM-21021990-A0 Revised: April 17, 2023

Appendix F - Construction Flow Rate Calculations

APPENDIX F: Dewatering Flow Rate

13, 15, 17, 19, \& 21 John Street and 36, 38, \& 40 South Station Street, Toronto, Ontario BRM-21021990-A0

Table F-1: Construction Dewatering Assessment

Parameters	Symbols	Unit	Construction
Geological Formation	-	-	Glacial Deposit
INPUTS			
Ground Elevation	-	mASL	127.40
Highest Groundwater Elevation	-	mASL	126.84
Lowest Top Slab Elevation	-	mASL	116.90
Lowest Foundation Invert Elevation	-	mASL	115.40
Height of Static Water Table Above the Base of the Water-Bearing Zone	H	m	26.84
Dewatering Target Elevation	-	mASL	114.40
Height of Target Water Level Above the Base of Water-Bearing Zone	$\mathrm{h}_{\text {w }}$	m	14.40
Drawdown	s	m	12.44
Dupuit Check (> 45\%)		m	54\%
Base of Aquifer / Water Bearing Zone	-	mASL	100.00
Hydraulic Conductivity	K	m / s	7.3E-07
Length of Excavation	-	m	50.00
Width of Excavation	-	m	49.00
Equivalent Radius (equivalent perimeter)	r_{e}	m	31.51
Method to Calculate Radius of Influence	-	-	Cooper-Jacob
Time (days)			45.00
Time (seconds)	t	s	3888000
Specific Yield	Sy		0.05
OUTPUTS			
Cooper-Jacob's Radius of Influence from Sides of Excavation	Rcj	m	59
Radius of Influence	Ro	m	90
Dewatering Flow Rate (unconfined radial flow component)	Q	$\mathrm{m}^{3} /$ day	97
Factor of Safety	fs	-	2.00
Dewatering Flow Rate (multiplied by factor of safety)	Q.fs	$\mathrm{m}^{3} /$ day	194
Precipitation Event	-	mm/day	15
Volume from Precipitation	-	$\mathrm{m}^{3} /$ day	37
Total Volume (L/day) Discharge of Groundwater (Construction dewatering) without Safety Factor (including precipitation)	-	$\mathrm{m}^{3} /$ day	134
Total Volume (L/day) Discharge of Groundwater (Construction dewatering) with Safety Factor (including precipitation)	-	$\mathrm{m}^{3} /$ day	230

Precipitation Event 2 year storm	-	$\mathrm{mm} / \mathrm{day}$	57
Volume from Precipitation	-	$\mathrm{m}^{3} / \mathrm{event}$	140
Precipitation Event 100 year storm	-	$\mathrm{mm} / \mathrm{day}$	124.4
Volume from Precipitation	-	$\mathrm{m}^{3} / \mathrm{event}$	305

Notes:
mASL - meters above sea leve
Analytical Solution for Estimating Radial Flow from an Unconfined Aquifer to a Fully-Penetrating Excavation

$$
\begin{aligned}
Q_{w} & =\frac{\pi K\left(H^{2}-h^{2}\right)}{\operatorname{Ln}\left[\frac{R_{o}}{r_{e}}\right]} \\
r_{e} & =\frac{a+b}{\pi} \quad R_{o}=R_{c j}+r_{e} \quad \quad \mathrm{R}_{c j}=\sqrt{2.25 K D t / S}
\end{aligned}
$$

Where:
$Q_{w}=$ Flow rate per unit length of excavation ($\mathrm{m}^{3} / \mathrm{s}$)
$K=$ Hydraulic conductivity (m / s)
$\mathrm{H}=$ Height of static water table above base of water-bearing zone (m)
$h_{w}=$ Height of target water level above the base of water-bearing zone (m)
Rcj=Cooper Jacob Radius of Influence (m)
$\mathrm{R}_{0}=$ Radius of influence (m)
re=Equivalent perimeter (m)

EXP Services Inc 13, 15, 17, 19, \& 21 John Street and 36, 38, \& 40 South Station Street, Toronto, Ontario Hydrogeological Investigation BRM-21021990-A0 Revised: April 17, 2023

Appendix G - ORMGP and TRCA

Bedrock Thalweg_13, 15, 17 and 21 John Street and 36, 38, and 40 South Station Street, Toronto, ON	Legend
	- Bedrock Thalweg York Region
0.7 0.34 $0.7 \quad \mathrm{Km}$ © Oak Ridges Moraine Groundwater Program, 2022 Map Compiled by the Oak Ridges Moraine Groundwater Program.101 Exchang Avenue, Vaughan, Ontario, M3N 1S4	SOURCE: ORMGP,2022; MNRF, 2022; PROJECTION: WGS_1984_Web_Mercator_A uxiliary_Sphere DATE PRINTED: September 7, 2022

Watershed_13, 15, 17 and 21 John St and 36, 38, and 40 South Station St, Toronto, ON

EXP Services Inc 13, 15, 17, 19, \& 21 John Street and 36, 38, \& 40 South Station Street, Toronto, Ontario Hydrogeological Investigation BRM-21021990-A0 Revised: April 17, 2023

Appendix H - Architectural Drawings

1 PARKING LEVEL 2 FLOOR PLAN

年

[^0]: Notes:
 mbTOP - meters below top of the pipe
 mbgs - meters below ground surface
 masl - meters above mean sea level
 Bold and Red - No representative of statis level

